

Report on Phase 1 and 2 Contamination Investigation

12 – 14 Phillip Street and 333 Church Street, Parramatta

> Prepared for Parramatta City Council

> > Project 72628.00 November 2011

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

B o controlle dottallo				
Project No.	72628.00 Document No. 1			
Document title	Phase 1 and 2 Contamination Investigation			
Site address	12 – 14 Phillip Street and 333 Church Street, Parramatta			
Report prepared for	Parramatta City Council			
Filo pomo	P:\72628.00 PARRAMATTA, Phase 1 & 2 CA PG\Docs\72628_Parramatta			
	FINAL Phase 1&2 CA .doc			

Document status and review

Revision	Prepared by	Reviewed by	Date issued
0	Kate Sargent	Paul Gorman	18 November 2011

Distribution of copies

Revision	Electronic	Paper	Issued to	
0	1		Parramatta City Council	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

8 November 2011
o November 2011
8 November 2011
1

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Executive Summary

Douglas Partners has conducted a Phase 1 / Phase 2 contamination investigation for the properties located at 12 – 14 Phillip Street and 333 Church Street, Parramatta NSW. The investigation was commissioned by Parramatta City Council in September 2011.

It is understood that Parramatta City Council are pursuing a property development strategy that involves the development of the Lennox Bridge car park (12-14 Phillip Street) and 333 Church Street, Parramatta. Although the final layout of the development strategy has not been finalised, it is understood that the development concept includes a multi-storey mixed use retail / residential building in the centre of the site, with several basement levels, a podium level adjoining the river frontage (comprising public walkway and retail stores), and associated landscaping.

The objectives of the investigation were to assess the potential for contamination of the site based on past and present site use, and to comment on the need for further investigation and/or management (if required). The investigation included an assessment of soil salinity, aggessivity and acid sulphate potential.

The Parramatta area is located mainly on Triassic aged Wiannamatta Group Bringelly shale, Minchinbury sandstone and Ashfield shale. The topography of the site slopes gently to the north-west before falling sharply towards the river to the north and north-west.

The investigation indicated that the site had historically been used for residential purposes before becoming and open air car park and commercial premises. It is understood that the façade of 333 Church Street is heritage listed. At the time of the investigation 12 - 14 Phillip Street was still being used as an open air car park, while 333 Church Street comprised a Greek restaurant, bookshops and a computer and IT store. The Greek restaurant appeared to be abandoned.

An intrusive soil investigation was conducted on the site. A total of 13 boreholes were drilled across the site in a general grid based pattern. Soil samples were collected from each of the borehole locations. Selected samples were analysed for a range of analytes, including heavy metals, polycyclic aromatic hydrocarbons, total petroleum hydrocarbons, BTEX – benzene, toluene, ethylbenzene, xylene, phenols, polychlorinated biphenyls, organochlorin pesticides, organophosphorus pesticides, volatile organic compounds and asbestos. Acid sulphate soil and salinity testing was also conducted. These samples were selected based on site observations (odour, staining etc), PID readings and their position within the borehole (i.e. fill or natural).

Three groundwater monitoring wells were positioned across the site in order to ascertain the inferred groundwater direction and enable groundwater assessment. One well was placed up gradient on the site (MW03) and two wells were placed down gradient (MW01 and MW02). Based on the groundwater levels and levels of the groundwater wells, the groundwater flow is inferred to be north to north west.

The bulk of soil samples tested returned either non detect or concentrations within the adopted site assessment criteria (SAC). Soil sample BH05/0.4-0.5 was found to have a lead concentration of 630 mg/kg, above the criteria for open space / parks (HIL C) of 600 mg/kg. The concentration of lead was below the criteria for residential with minimal access to soils (HIL D). The source of the lead may be the filling or lead based paints used on former structures.

Two samples returned positive results for asbestos. MW01/0.5-0.6 was found to have chrysotile and amosite asbestos with trace respirable fibres detected. BH07/0.8-1.0 was also found to have chrystotile and amosite asbestos, but with no respirable fibres. The asbestos may be sourced from a possible asbestos pipe passing in close proximity to the two bores, asbestos in the fill and/or residual asbestos resulting from the demolition of former structures.

The results of the groundwater analysis indicated that organic and inorganic analyte concentrations were within the adopted GIL, with the exception of copper in MW01 (4 μ g/L), MW02 (3 μ g/L) and MW03 (2 μ g/L), exceeding the GIL 1.3 μ g/L. The elevated copper level is considered to be indicative of background levels and is therefore not considered to be significant.

On the basis of the analytical results of the acid sulphate soil tests, it is considered that the likelihood of the presence of ASS and acidic components in soil across the site is low.

Based on the site observations and analytical results, it is considered that there are not likely to be any significant issues with the proposed development as a result of soil salinity or aggressivity.

This Phase 1 and 2 contamination investigation indicates that there is generally a low risk of soil or groundwater contamination within the site. As such, the site is considered, from a contamination perspective, to be generally suitable for the proposed development.

The following recommendations are provided in terms of further site investigations and management:

- It appears that there may be some asbestos on the site due to a former asbestos cement pipe/conduit located in the north western corner of the site, or asbestos in the filling (MW01 and BH107). In the event that this section is to be excavated during construction works, any asbestos cement materials should be removed by a suitably qualified and AS A licenced contractor. Given the detection of trace respirable fibres, air monitoring will be required as part of the works;
- Should any asbestos fragments be detected during future civil works, this area should be demarcated and the AS A licensed contractor engaged to removed the identified impact;
- Any soils requiring removal from the site must initially be classified in accordance with the NSW
 waste classification guidelines; and
- Due to the limited access beneath the building at 333 Church Street, DP recommends that once the concrete slabs associated with the building have been removed, additional sampling in this area is conducted to ensure a complete sampling density in line with OEH NSW requirements.

Table of Contents

Page

1.	Introd	oduction1		
2.	Scop	e of Works	.1	
	2.1	Desktop Study	.1	
	2.2	Fieldwork	.2	
	2.3	Reporting	.3	
3.	Site le	dentification and Location	.3	
	3.1	Site Location	.3	
4.	Geolo	ogy, Topography and Hydrogeology	.4	
	4.1	Groundwater Bore Search	.4	
	4.2	Salinity Mapping	.4	
	4.3	Acid Sulphate Soils Mapping	.5	
5.	Site H	listory	5	
	5.1	Aerial Photograph Record	5	
	5.2	Historical Title Deeds Search	6	
	5.3	NSW WorkCover Dangerous Goods Database	16	
	5.4	Council Section 149 (2) and (5) Certificates	16	
	5.5	Regulatory Notices Search	17	
6.	Site C	Dbservations	18	
7.	Areas	of Environmental Concern	18	
8.	Samp	ling, Analysis and Data Quality Objectives	19	
	8.1	Data Quality Objectives	19	
		8.1.1 State the Problem	19	
		8.1.2 Identify the Decision	19	
		8.1.3 Identify Inputs into the Decision	20	
		8.1.5 Develop a Decision Rule	20 20	
		8.1.6 Specify Acceptable Limits on Decision Errors	21	
		8.1.7 Optimise the Design for Obtaining Data	21	
		8.1.8 Data Quality Indicators	22	
	8.2	Field Quality Assurance and Quality Control	23	
	8.3	Laboratory QA/QC	23	
	8.4	Sample Location and Rationale	23	
	8.5	Soil Sampling Procedures	24	

Table of Contents

Page

	8.6	Groundwater Monitoring Well Construction and Sampling Details24		24
	8.7	Analyti	cal Rationale	25
		8.7.1	Contamination Assessment	25
		8.7.2	Salinity and Aggressivity Assessment	26
		8.7.3	Acid Sulphate Soil Assessment	27
9.	Site A	Assessm	nent Criteria	28
	9.1	Contar	nination Assessment	28
	9.2	Salinity	and Aggressivity Assessment	30
	9.3	Acid S	ulphate Soils	31
10.	Grou	ndwater	Investigation Levels	32
11.	Resu	ılts		34
	11.1	Field C	Observations – Soil	34
	11.2	Soil Fie	eld Testing Results	35
	11.3	Field C	Dbservations – Groundwater	35
	11.4	pH Scr	eening	35
	11.5	Labora	tory Results	35
12.	Discu	ussion		39
	12.1	Soil Inv	vestigation	39
	12.2	Ground	dwater Investigation	39
	12.3	Acid S	ulphate Soil Investigation	39
	12.4	Salinity	y and Aggressivity	41
13.	Conc	lusion a	nd Recommendations	42
14.	Limita	Limitations42		

Appendix A:	Site Layout Plan and Notes About this Report
Appendix B:	Groundwater Bore Search
Appendix C:	Aerial Photographs
Appendix D:	Historical Title Deeds
Appendix E:	WorkCover Search Documentation
Appendix F:	Section 149 Certificates
Appendix G:	QA/QC Documentation
Appendix H:	Borehole Logs
Appendix I:	Laboratory Results and Chain-of-Custody

Abbreviations

AEC	Areas of Environmental Concern
ANZECC	Australia and New Zealand Environment and Conservation Council
ASS	Acid Sulphate Soil
ASSMAC	Acid Sulphate Soils Management Advisory Committee
BGL	Below Ground Level
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CLM Act	Contaminated Land Management Act
COC	Chain of Custody
COPC	Contaminants of Potential Concern
DEC	Department of Environment and Conservation (now OEH)
DECCW	Department of Environment, Climate Change and Water (now OEH)
DIPNR	Department of Infrastructure, Planning and Natural Resources
DP	Douglas Partners
DQI	Data Quality Indicator
DQO	Data Quality Objective
EC	Electrical Conductivity
EPA	Environmental Protection Agency (now OEH)
ESP	Exchangeable Sodium Percentage
GIL	Groundwater Investigation Level
GW	Groundwater
Heavy Metals	Refers to Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc
HIL	Health-based Investigation Level
LEP	Local Environment Plan
LNAPL	Light Non-aqueous Phase Liquid
MW	Monitoring Well
NATA	National Association of Testing Authorities
NEPM	National Environment Protection Measure
OCP	Organochlorine Pesticides
OEH	Office of Environment and Heritage
OPP	Organophosphorus Pesticides
PASS	Potential Acid Sulphate Soil
PAH	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated biphenyls
PID	Photo-ionisation Detector
POEO	Protection of the Environment Operations Act
PPM	Parts Per Million
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percentage Difference
SAC	Site Assessment Criteria
SPOCAS	Peroxide Oxidation Combined Acidity Sulphate Testing
SVVL	Standing Water Level
IPH	I otal Petroleum Hydrocarbons
USI	Underground Storage Lank
VOC	Volatile Organic Compounds

Report on Phase 1 / Phase 2 Contamination Investigation 12 – 14 Phillip and 333 Church Streets, Parramatta

1. Introduction

This report presents the results of a Phase 1 / Phase 2 contamination investigation, undertaken for 12 – 14 Phillip and 333 Church Streets, Parramatta, New South Wales (hereon referred to as "the site"). The investigation was commissioned by Ms Lucinda Mander-Jones of Parramatta City Council in a letter of engagement dated 16 September, 2011.

It is understood that Parramatta City Council are pursuing a property development strategy that involves the development of the Lennox Bridge car park (12-14 Phillip Street) and 333 Church Street, Parramatta. Although the final layout of the development strategy has not been finalised, it is understood that the development concept includes a multi-storey mixed use retail / residential building in the centre of the site, with several basement levels, a podium level adjoining the river frontage (comprising public walkway and retail stores), and associated landscaping.

The objectives of the investigation were to assess the potential for contamination of the site based on past and present site use, and to comment on the need for further investigation and/or management (if required). The investigation includes an assessment of soil salinity, aggessivity and acid sulphate potential.

2. Scope of Works

The scope of the current Phase 1 and 2 contamination investigation comprised the following:

2.1 Desktop Study

- A site walkover, in order to identify site features, site activities, and any potential contamination issues visually apparent;
- Identification of the property street address and property description, name and address of the owner;
- Search of the current and historical titles and deposited plans to identify previous owners and potentially contaminating activities;
- Review of historical aerial photographs;
- Search of the Contaminated Lands Register for notices issued under the *Contaminated Lands Management Act* 1997;
- Conduct a groundwater bore search in the vicinity of the site;
- Search the WorkCover database for records of any dangerous goods licences;

- Obtain and review Section 149 (2 and 5) certificates for the site; and
- Review general map information, including geological, acid sulphate potential, salinity and hydrogeological information.

2.2 Fieldwork

- Position and auger/push tube 13 test bores for environmental, salinity and acid sulphate soil (ASS) sampling. The bores were extended to a maximum of 7.0 m depth, 0.5 m into natural soil, or prior refusal;
- Collection of soil samples from the auger/push tubes at broadly regular intervals, and based on potential indicators of contamination, such as staining or olfactory signs;
- Screening of soil samples using a photo-ionisation detector (PID) for volatile organic compounds;
- Screening of 15 soil samples from two of the deep bores for existing and oxidised pH, as an initial screen for ASS potential;
- Despatch of 64 soil samples to a NATA accredited laboratory for analysis of the following contaminants of potential concern (COPC):
 - heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) 20 samples;
 - o polycyclic aromatic hydrocarbons (PAH) 20 samples;
 - total petroleum hydrocarbons (TPH) 20 samples;
 - monocyclic aromatic hydrocarbons (BTEX benzene, toluene, ethylbenzene, xylene) 20 samples;
 - o phenols 14samples;
 - polychlorinated biphenyls (PCB) 14 samples;
 - o organochlorine pesticides (OCP) and organophosphorus pesticides (OPP) 14 samples;
 - volatile organic compounds (VOC) 6 samples;
 - o asbestos 14 samples;
 - QA/QC samples analysed for heavy metals, TPH, BTEX and PAH (two intra-laboratory and one inter-laboratory replicate samples, two trip blanks and two trip spikes);
- Despatch of 15 soil samples to the NATA accredited laboratory for salinity and aggressivity indicators analyses, including:
 - o textural classification;
 - o pH
 - electrical conductivity (EC);
 - o sulphate and chloride;
 - Exchangeable Sodium Percentage (ESP);

- Conversion of three of the bores into groundwater monitoring wells to a maximum depth of 7 m below ground level (bgl). These were identified as MW01, MW02 and MW03. The wells were developed and sampled, including collection of field parameters such as pH, dissolved oxygen, temperature and electrical conductivity;
- A total of three groundwater samples were sent to the laboratory for quantitative analysis. The following potential contaminants were assessed:
 - o heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc);
 - o TPH;
 - o monocyclic aromatic hydrocarbons (BTEX);

Douglas Partne

I Environment

- o PAH;
- o PCB;
- o VOC;
- o Hardness; and
- o QA/QC samples analysed for heavy metals and PAH (1 intra-laboratory replicate).

2.3 Reporting

A combined phase 1 and phase 2 contamination investigation report (including salinity, aggressivity and acid sulphate soil assessment) was prepared, detailing the fieldwork rationale and methodology, results of the assessment, a discussion of the analytical results and recommendations for further work if required. The report is prepared in general accordance with the published Office of Environment and Heritage NSW (OEH) endorsed guidelines.

3. Site Identification and Location

3.1 Site Location

The property at 12 – 14 Phillip Street is currently a large open air hardstand car park, with a steep grass covered slope falling north and north-west from the edge of the car park towards the banks of Parramatta River. The property is surrounded by Parramatta River to the north, a shopping precinct and Church street to the east, commercial properties to the south, and a small number of commercial properties and open space to the west. The entrance to the site is from Phillip Street.

The property at 333 Church Street was recently used for mixed commercial purposes, including a Greek restaurant, bookshops and a computer and IT store. At the time of the inspection, the Greek restaurant still contained furnishings, utensils and office equipment; however it appeared that the site had not been entered for a lengthy period of time.

The property at 12 - 14 Phillip Street is identified as Lot 1 in deposited plan 791693 and is zoned as B4 – mixed use. The property is noted to be flood prone land. The property at 333 Church Street is identified as Lot 3 in deposited plan 825049 and is zoned as B4 – mixed use. The façade of the building is noted to be heritage listed.

4. Geology, Topography and Hydrogeology

Reference to the Sydney 1:250,000 series geological sheet indicates that the Parramatta area is located mainly on Triassic aged Wiannamatta Group Bringelly shale, Minchinbury sandstone and Ashfield shale.

The topography of the site slopes gently to the north-west before falling sharply towards the river to the north and north west.

Parramatta River lies to the north and west of the site. Further to the north is Hunts Creek and Lake Parramatta. Further to the south is Duck River. Parramatta River flows to the east into Sydney Harbour and the Tasman Sea. The anticipated groundwater flow from the site is north towards the river.

4.1 Groundwater Bore Search

A groundwater bore search of the Department of Water and Energy website (previously held by the Department of Natural Resources) was conducted on 20 September 2011. Five groundwater bores were located within a 1 km radius of the site. Work summaries were available for all of the bores. Details are provided in Appendix B. Two of the bores were noted to be for domestic use (GW108611 and GW024667), while three were for monitoring purposes (GW110912, GW110913 and GW110914).

Standing water levels (SWL) were noted to be between 6.2 m bgl (GW108611) and 7.0 m bgl (GW110912 and GW110913). Drillers logs supplied indicated that the lithology across the area generally comprised fill, followed by sandy red or red brown clay, shale and sandstone.

All registered bores are located on the opposite side of Parramatta Rive to the subject site.

4.2 Salinity Mapping

The former Department of Infrastructure Planning and Natural Resources (DIPNR), on their map entitled "Salinity Potential in Western Sydney 2002", infers "moderate salinity potential" over the site. The DIPNR mapping is based on soil type, surface level and general groundwater considerations but is not in general ground-truthed, hence it is not generally known if actual soil salinities are consistent with the potential salinities of DIPNR.

4.3 Acid Sulphate Soils Mapping

Based on Parramatta City Council's Draft Local Environment Plan 2010 (LEP), it appears that the site is in an area of no known acid sulphate soil (ASS). The nearest known area for potential ASS is located approximately 300 m to the east of the site, with Class 1 and 4 soils potentially present. Class 1 ASS require development consent for any works to be conducted, while Class 4 ASS require consent for works more than 2 m below natural ground surface or where works are likely to lower the existing water table more than 2 m.

Approximately 300 m to the north-west of the site, beyond the river are Class 5 ASS. Class 5 ASS require consent for works within 500 m adjacent to Class 1, 2, 3 or 4 land that is below 5 m AHD by which the water table is likely to be lowered below 1 m AHD on adjacent ASS classified land.

5. Site History

A review of the site history is based on historical aerial photographs, historical title deeds, a WorkCover Dangerous Goods database search, a search for regulatory notices (issued under the *Contaminated Lands Management Act* 1997 (CLM Act) and *Protection of the Environment Operations Act* 1997 (POEO Act)), and a review of Council Section 149 (2) and (5) certificates.

5.1 Aerial Photograph Record

Historical aerial photographs from the years 1943, 1961, 1970, 1986, 2002 and 2011 were obtained from the NSW Department of Lands Office, Nearmap and Six Viewer websites. These photographs were studied in order to identify the likely past uses and changes to the site, particularly those of a potentially contaminating nature. The findings are summarised below and copies of the aerial photographs are provided in Appendix C.

- **1943** The site appears to be used primarily for residential purposes. A number of buildings and associated backyards are located across the site. Some of these features are associated with commercial or retail properties fronting Church Street. To the east are commercial properties fronting Church Street. To the south of the property is Phillip Street. A number of residential / commercial properties are located to the west. To the north is the Parramatta River. It is noted that Parramatta River, in the vicinity of the site, appears significantly narrower than currently (2011) exists.
- **1961** Additional small buildings / sheds are apparent within the site, particularly in the northwestern portion. The majority of the site has not changed significantly since 1943. There are no notable changes in the surrounding properties.
- **1970** Although the aerial photograph is of poor quality, it appears that the former buildings covering the bulk of the site have been demolished and the site is now an open air car park (a number of vehicles are apparent). A building previously located on the southern boundary has been cleared to create a laneway access to the car park. The majority of the vegetation on the western and northern boundaries has been cleared. There is no

noted significant change to the surrounding properties, however again it is noted that the photograph is of poor quality.

- **1986** The majority of the site is used as an open air car park (12-14 Phillip Street), while a building is present in the north eastern corner of the site (333 Church Street). To the north of the site is Parramatta River. At this stage, the river in the vicinity of the site appears wider and is similar to that currently existing (2011). To the east and south are commercial premises / shops and Church Street and Phillip Street respectively. West of the site is the weir and Marsden Street, followed by open space / parkland.
- **2002** The site appears relatively unchanged since the 1986 photograph, with the exception of some ground disturbance in the south-western portion, presumably associated with the planned construction of an apartment building, now located to the south-west of the site.
- 2011 The site appears to generally be unchanged since the 2002 photograph. Parramatta Riverside Theatre is located to the north of the site, beyond the river. To the south west a residential apartment block is noted.

It appears that the site was historically used for residential and part commercial / retail purposes (at least since 1943), prior to being redeveloped into an open air car park and retail building to the north east sometime between 1961 and 1970. The site use has remained unchanged since that time.

5.2 Historical Title Deeds Search

A historical title deeds search was conducted for the site. Searches were undertaken by Mark Groll of Service First Registration Pty Ltd. The tables below summarises the reported title deed information. A full copy is also provided in Appendix D.

Marsden, Phillip & Church Streets, Parramatta Description: - Lot 1 D.P. 791693

As regards that part marked (1) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use	
28.12.1897	Elsie Ellen Fleay (Spinster)	Residential/Open Space	
10.10.1932	Alexander Melville (Agent)	Residential/Open Space	
11 07 1022	Donald Fleay Melville (Farmer & Grazier)	Agricultural (regidential	
11.07.1955	Alexander Melville (Agent)	Agricultural / Tesiderillar	
22.07.1041	Amy Jane Melville (Widow)	Agricultural (regidential	
22.07.1941	Donald Fleay Melville (Farmer & Grazier)	Agricultural / Tesiderillar	
11.06.1041	Amy Jane Melville (Widow)	Agricultural / regidential	
11.00.1941	Donald Fleay Melville (Farmer & Grazier)	Agricultural / Tesiderillar	
09.10.1959	Coulan George Burnham (Company Director)	Commercial / residential	
30.06.1970	Burnham Brothers Pty Limited	Commercial	
20.00.1072	M.B.C. (Parramatta) Pty Limited	Commercial	
20.09.1975	(Now T.S.S.S. Parramatta Pty Ltd)	Commercial	
	John Patrick Partridge (Real Estate Agent)		
13.11.1979	Christopher Errol Underwood (Jeweller)	Commercial	
	David Garth Tetley Miles (Real Estate Agent)	Commercial	
	Gail Miles (Married Woman)		
27.01.1981	# Council of the City of Parramatta	Commercial/Car park	

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (2) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
28.12.1897	Elsie Ellen Fleay (Spinster)	Residential
10.10.1932	Alexander Melville (Agent)	Residential

Search continued as regards that part marked (2) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use	
11 07 1022	Donald Fleay Melville (Farmer & Grazier)	Agricultural (regidential	
11.07.1955	Alexander Melville (Agent)	Agricultural / Tesidential	
22.07.1041	Amy Jane Melville (Widow)	Agricultual / residential	
22.07.1941	Donald Fleay Melville (Farmer & Grazier)		
11.06.1941	Amy Jane Melville (Widow)	Agricultural / residential	
	Donald Fleay Melville (Farmer & Grazier)		
07.12.1953	Stanley Kerkenzov (Radio Salesman)	Commercial	
28.10.1966	# Council of the City of Parramatta	Commercial/Car park	

Denotes Current Registered Proprietor

As regards that part marked (3) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
28.12.1897	Elsie Ellen Fleay (Spinster)	Residential
10.10.1932	Alexander Melville (Agent)	Residential
11.07.1933	Donald Fleay Melville (Farmer & Grazier) Alexander Melville (Agent)	Agricultural / residential
22.07.1941	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier)	Agricultural / residential
11.06.1941	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier)	Agricultural / residential
29.01.1954	Mark Foy's Limited	Commercial
07.07.1965	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards those parts marked (4) & (5) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
21.05.1902	James Channon (Manufacturer)	Residential
	Eliza Mary Haydon (Spinster)	
06 10 1019	Eileen Bridget Haydon (Spinster)	Desidential
00.12.1918	(Now Eileen Bridget Burton, Married Woman)	Residentia
	Mary Theresa Haydon (Spinster)	
28.02.1923	Lee Sing (Merchant & Married Woman)	Residential
28.01.1924	Alfred Bassett (Grazier)	Agricultural / residential
18.02.1935	John McAuslan Ritchie (Gentleman)	Residential
07.12.1953	Mark Foy's Limited	Commercial
21.02.1968	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (6) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
21.05.1902	James Channon (Manufacturer)	Residential
	Eliza Mary Haydon (Spinster)	
06 12 1019	Eileen Bridget Haydon (Spinster)	Residential
00.12.1918	(Now Eileen Bridget Burton, Married Woman)	Residential
	Mary Theresa Haydon (Spinster)	
09.08.1923	Lee Sing (Merchant & Married Woman)	Residential
28.01.1924	Alfred Bassett (Grazier)	Agricultural / residential
18.02.1935	John McAuslan Ritchie (Gentleman)	Residential
07.12.1953	Mark Foy's Limited	Commercial
21.02.1968	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (7) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
21.05.1902	James Channon (Manufacturer)	Residential
	Eliza Mary Haydon (Spinster)	
06 12 1019	Eileen Bridget Haydon (Spinster)	Posidontial
06.12.1918	(Now Eileen Bridget Burton, Married Woman)	Residentia
	Mary Theresa Haydon (Spinster)	
17 11 1000	Stephen Arthur Ellich (Furniture Dealer)	Posidontial
17.11.1922	George Andrew Paul (Furniture Dealer)	Residential
02.05.1935	John McAuslan Ritchie (Gentleman)	Residential
07.12.1953	Mark Foy's Limited	Commercial
25.10.1967	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (8) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
06.01.1876	David Houison (& His Deceased Estate)	Residential
17.03.1921	Sidney Smith (Produce Merchant)	Residential
20.01.1025	Stephen Arthur Ellich (Furniture Dealer)	Residential
30.01.1925	George Andrew Paul (Furniture Dealer)	
20.07.1931	Sidney Smith (Produce Merchant)	Residential
22 07 1051	Leslie Philip Henry Jeffery (Medical Practitioner)	Commercial
23.07.1951	Jack Albert Houston Jeffery (Medical Practitioner)	
24.03.1961	Number 10 Phillip Street Pty Limited	Commercial
17.08.1967	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (9) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
	Frederick Vahrenkamp (Cabinet Maker)	
17.04.1872	(Also known as Frederick William Vahrenkamp)	Residential
	(& His deceased estate)	
30.11.1953		
(Purchase)	James Sidney Greenfield (Master Butcher)	Commercial
20.12.1956		Commercial
(Confirmation)		
26.03.1957	Presbyterian Church (New South Wales) Property	Commorgial
	Trust	Commercial
31.10.1967	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
17.04.1872	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Residential
30.11.1953 (Purchase) 20.12.1956 (Confirmation)	James Sidney Greenfield (Master Butcher)	Commercial
26.03.1957	Presbyterian Church (New South Wales) Property Trust (Now Uniting Church in Australia Property Trust (N.S.W.)	Commercial
24.03.1988	# Council of the City of Parramatta	Commercial/Car park

As regards that part marked (10) on the attached copy of D.P. 791693

Denotes Current Registered Proprietor

As regards that part marked (11) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
11.03.1910	Richard Lambert Hamilton (Storeman)	Residential
05.06.1925	Charles Albert Harry Freestone (Manufacturer)	Residential
08.05.1959	Maggie Frances Freestone (Widow)	Residential
29.05.1959	Presbyterian Church (New South Wales) Property Trust (Now Uniting Church in Australia Property Trust (N.S.W.)	Commercial
24.03.1988	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (12) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
11.03.1910	Richard Lambert Hamilton (Storeman)	Residential
05.06.1925	Charles Albert Harry Freestone (Manufacturer)	Residential
08.05.1959	Maggie Frances Freestone (Widow)	Residential
29.05.1959	Presbyterian Church (New South Wales) Property Trust (Now Uniting Church in Australia Property Trust (N.S.W.)	Commercial
31.10.1967	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (13) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
11.03.1910	Richard Lambert Hamilton (Storeman)	Residential
05.06.1925	Charles Albert Harry Freestone (Manufacturer)	Residential
08.05.1959	Maggie Frances Freestone (Widow)	Residential
01.06.1959	Rumseys Seed Pty Limited	Commercial
22.10.1963	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (14) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
22.08.1888	John Booth (Freeholder)	Residential
16.03.1916	Richard Lambert Hamilton (Storeman)	Residential
05.06.1925	Charles Albert Harry Freestone (Manufacturer)	Residential
08.05.1959	Maggie Frances Freestone (Widow)	Residential

Search continued as regards that part marked (14) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
01.06.1959	Rumseys Seed Pty Limited	Commercial
22.10.1963	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (15) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
08.05.1872 (1872 to?)	William Byrnes (Farmer)	Agricultural / residential
	This parcel of land subsequently formed part of the site of a Right of Way. The next event found for this parcel is the issue of Certificate of Title Volume 6714 Folio 96 dated 31.08.1953 It would appear that Charles Albert Harry Freestone (Manufacturer) may have acquired this parcel by possession	
31.08.1953	Charles Albert Harry Freestone (Manufacturer)	Residential
08.05.1959	Maggie Frances Freestone (Widow)	Residential
01.06.1959	Rumseys Seed Pty Limited	Commercial
22.10.1963	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (16) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
17.04.1872	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Commercial
30.11.1953 (Purchase) 20.12.1956 (Confirmation)	James Sidney Greenfield (Master Butcher)	Commercial
Circa 1956	This parcel became a Council Public Road upon the approval of D.P. 161817 at the Title Office. Such dedication being pursuant to the Local Government Act of 1919	
1956	# Council of the City of Parramatta	Roadway

Denotes Current Registered Proprietor

As regards that part marked (17) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
17.04.1872	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Residential
30.11.1953	James Sidney Greenfield (Master Butcher)	Commercial
14.11.1956	Mun Wai Yuen (Green Grocer)	Commercial
12.06.1985	Japour Pty Limited	Commercial
12.02.1987	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (18) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
27.07.1908	Isabella Rigelsford (Married Woman)	Residential
19.08.1918	Violet Pearle Couper Leabeater (Married Woman)	Residential
20.07.1949	Rumseys Seed Pty Limited	Commercial
01.03.1968	N.S.W. Permanent Building Society Limited	Commercial
05.12.1969	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (19) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
28.06.1921	Edward Joseph Pearce (Farmer)	Agricultural / residential
21.09.1927	Walter Riddle (Grazier) (& His deceased estate)	Agricultural / residential
07.10.1947	Albert William Riddle (Stud Master)	Commercial
14.03.1950	Joyce Innes Lucas (Married Woman)	Commercial
14.03.1950	Bankers & Traders Insurance Company Limited	Commercial
02.08.1974	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (20) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
22.12.1921	Beatrice Sutton (Married Woman)	Residential
22 12 1022	John Joseph Condon (Master Butcher)	Posidontial
22.12.1925	Richard Patrick Condon (Master Butcher)	Residential
	Andrew Derrin (Merchant)	
06.11.1926	James Melville Derrin (Merchant)	Residential
	William McLean Derrin (Merchant)	
23.09.1935	Sidney Joseph Adams (Property Owner)	Residential
24 00 1035	Alfred Ernest Baker (Store Keeper)	Commercial
24.09.1955	Arthur Frank Baker (Store Keeper)	
05.05.1958	Rumseys Seed Pty Limited	Commercial
22.10.1963	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (21) on the attached copy of D.P. 791693

This parcel of land formed part of lands originally granted to John Byrnes dated 20th May 1840. John Byrnes and his deceased estate provided a Right of Way 10 feet wide during the 1800's. It would seem that the documentary title to the site of this Right of Way remained comprised in name of John Byrnes and his deceased estate up to the date of acquisition by Parramatta City Council by notification in Government Gazette dated 21.07.1967 Folio 2665.

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
21.07.1967	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (22) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
26.08.1919	George Sutton (Plumber)	Residential
22 10 1022	John Joseph Condon (Master Butcher)	Desidential
22.10.1923	Richard Patrick Condon (Master Butcher)	Residential
	Andrew Derrin (Merchant)	
06.11.1926	James Melville Derrin (Merchant)	Residential
	William McLean Derrin (Merchant)	
23.09.1935	Sidney Joseph Adams (Property Owner)	Residential
23.03.1936	Garnet Evans (Gentleman)	Decidential
	Mary Ellen Evans (Married Woman)	Residentia

Search continued as regards that part marked (22) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
15.10.1940	John Thomas Gettens (Valuator)	Residential
06.06.1946	John Edwin Fitzgerald Burns (Butcher)	Commercial
23.02.1961	Burns Animal Food Company Pty Limited	Commercial
03.06.1977	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part marked (23) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
25.03.1915	Priscilla Jane Beers (Widow)	Residential
31.10.1960	A.J. Yeo Pty Limited	Commercial
12.08.1963	Rigneys Holdings Limited	Commercial
15.12.1964	Arthurs Food Hall Pty Limited	Commercial
16.101970	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

As regards that part marked (24) on the attached copy of D.P. 791693

This parcel of land is described as Right Title and Interest (Possessory Title) in Conveyance Book 2989 No. 854. This parcel of land is contained in the descriptions of the deeds listed below

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
31.10.1960	A.J. Yeo Pty Limited	Commercial
12.08.1963	Rigneys Holdings Limited	Commercial
15.12.1964	Arthurs Food Hall Pty Limited	Commercial
16.10.1970	# Council of the City of Parramatta	Commercial/Car park

Denotes Current Registered Proprietor

Phase 1 & 2 Contamination Investigation 12-14 Phillip and 333 Church Streets, Parramatta

As regards that part marked (25) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
07.05.1883	Ann Beale (Spinster)	Residential
27.10.1927	Lee Sing	Residential
03.09.1935	Hermann Schreiber (Financier)	Residential
29.09.1954	Raymond Frank Pantlin (Store Keeper)	Commercial
16.02.1968	# Council of the City of Parramatta	Commercial/Car park

<u># Denotes Current Registered Proprietor</u>

As regards that part highlighted pink and marked (26) on the attached copy of D.P. 791693

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
17.04.1872	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Residential
30.11.1953	James Sidney Greenfield (Master Butcher)	Commercial
	After viewing D.P. 161817 it was found that this parcel was included in the Right of Way It would appear that the next transaction may have been the acquisition by Parramatta City Council This parcel is now comprised in Folio Identifier 1/791693	
27.07.1990	# Council of the City of Parramatta	Roadway

<u># Denotes Current Registered Proprietor</u>

As regards that part highlighted orange and marked (27) on the attached copy of D.P. 791693

This parcel of land formed part of lands originally granted to John Byrnes dated 20th May 1840. John Byrnes and his deceased estate provided a Right of Way 10 feet wide during the 1800's. It would seem that the documentary title to the site of this Right of Way remained comprised in name of John Byrnes and his deceased estate up to the date of acquisition by Parramatta City Council. The only gazette that we could find vesting in the Council is the Gazette dated 27.07.1990 Folio 7070.

Date of Acquisition	Registered Proprietor(s) & Occupations	Possible Site Use
27.07.1990	# Council of the City of Parramatta	Roadway

Denotes Current Registered Proprietor

Re: - 333 Church Street, Parramatta Description: - Lot 3 D.P. 825045

Data of Association	Registered Proprietor(s) &	Possible Site Use	
Date of Acquisition	Occupations		
16.10.1923	Anna Louisa Smith (Widow)	Residential	
11.12.1923	Claude Breasley (Real Estate Agent)	Commercial	
06.03.1936	Frank Edward Maling (Merchant)	Commercial	
30.03.1937	Sidney Joseph Adams (Gentleman)	Commercial	
01.03.1938	Frank Edward Maling (Merchant)	Commercial	
28.10.1960	Parramatta Arcade Pty Limited	Commercial	
29.09.1988	Interior No. 2 Pty Limited	Commercial	
	# Leo Papadolias		
15.05.1992	# Anna Papadolias	Commorcial	
	# Stavros Skarmoutzos	Commercial	
	# Avgi Skarmoutzos		

<u># Denotes current Registered Proprietors</u>

It appears that Mark Foys purchased part of the land in order to open a store in Church Street near Lennox Bridge (Sydney Morning Herald article dated 7th June 1961). The store did not go ahead and Parramatta Council obtained the land. Based on the historical title records and aerial photographs it appears that Lot 1 within deposited plan 791693 (including the Phillip Street site) has been used for a mixture of residential and commercial purposes, prior to becoming an open air car park and roadway. Lot 3 in deposited plan 825045 has largely been used for commercial purposes.

5.3 NSW WorkCover Dangerous Goods Database

A search of the NSW WorkCover Dangerous Goods Database indicated that there were no dangerous goods stores registered for the site.

WorkCover Search documentation is provided in Appendix E.

5.4 Council Section 149 (2) and (5) Certificates

The section 149 (2) and (5) planning certificates for the site were obtained from Parramatta City Council and are dated 10 October 2011 (provided in Appendix F). The section 149 certificate for Lot 1 in deposited plan 791693 under the Parramatta City Centre Local Environmental Plan 2007, is zoned B4 – Mixed Use. The section 149 certificate for Lot 3 in deposited plan 825045 indicates that the site is also zoned B4 – Mixed Use. Neither of the sites is affected by any matters under Clause 59(2) of the Contaminated Land Management Act, 1997.

Copies of the Section 149 certificates are included in Appendix F.

5.5 Regulatory Notices Search

The OEH publishes records of contaminated sites under Section 58 of the CLM Act 1997 on a public database accessed via the internet. The notices relate to investigation and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act. More specifically, the notices cover the following:

- Actions taken by the EPA under section 15, 17, 19, 21, 23, 26 or 28 of the CLM Act;
- Actions taken by the EPA under section 35 and 36 of the Environmentally Hazardous Chemicals Act, 1985;
- Site audit statements provided to the EPA under section 52 of the CLM Act on sites subject to an enforced declaration order.

A search of the public database was conducted on the 21 September 2011 and revealed that the subject site was not listed.

It should be noted that the OEH record of notices for contaminated land does not provide a record of all contaminated land in NSW. At the time of preparing this report a total of 291 sites were registered in the database.

The OEH also issues environmental protection licences to the owners or operators of various industrial premises under the POEO Act. Licence conditions relate to pollution prevention and monitoring, and cleaner production through recycling and reuse and the implementation of best practice.

The OEH has made available a public register of notices under section 308 of the POEO Act. The register contains:

- environmental protection licences;
- applications for new licences and to transfer or vary existing licences;
- environmental protection and noise control licences;
- convictions in prosecutions under the POEO Act;
- the result of civil proceedings;
- licence review information;
- exemptions from provisions of the POEO Act or Regulations;
- approvals granted under Clause 9 of the POEO (Control of Burning) Regulation;
- approvals granted under Clause 7a of the POEO (Clean Air) Regulation.

A search of the register indicated that no licences were registered for the site.

6. Site Observations

A site inspection was conducted by an experienced environmental scientist from Douglas Partners on the 19 September 2011. The property at 333 Church Street appeared to have been abandoned at the time of the inspection. The building was previously used as a restaurant and the fully furnished kitchen and dining room remained. A small loading dock was noted, with an entrance from Lennox Bridge car park. The area was being utilised for the storage of furniture, cooking oil drums and other pieces. The building façade is understood to be heritage listed.

Lennox Bridge car park is located at 12 – 14 Phillip Street. The area is mainly covered in road base and bitumen, with some grassed areas along the western and northern perimeters. The grassed areas form public access areas, including a walking track along the Parramatta River foreshore. The site slopes steeply from the car park to the river foreshore, as indicated on Drawing 1, Appendix A.

There were no visual indicators of underground storage tanks (i.e. fill points, bowsers, vent pipes), nor were there any visual indicators of other forms of contamination (e.g. asbestos on the ground surface, chemical spills, vegetation die-back). It is noted that the investigation does not include a hazardous materials assessment of the building in the north-eastern corner of the site.

There were no visual indicators of salinity issues at the site, which can be in the form of heavy / localised soil erosion, salt crusting on the ground surface, the presence of salt tolerant plant species, or salt infestation / rising damp towards the base of the existing buildings.

7. Areas of Environmental Concern

The site appears to have been used for residential and commercial purposes prior to redevelopment as a car park and current commercial building. There is the potential that historical fibre cement materials containing asbestos may have been used in the construction of the former buildings (now removed). The demolition of any of these structures may have resulted in asbestos fragments being left in the surface soils, or any soils disturbed during the process. Furthermore, the use of lead based paints in the former buildings is likely. Residual lead contamination of surface or disturbed soils is a possibility.

The site has been filled in part for presumably levelling purposes. It is noted that the extent of fill in the areas sampled was generally low. However, the presence of imported fill presents an area of environmental concern, particularly if the origin is not known.

Parts of the site have been used for commercial purposes in the past, however, it is likely that these uses were associated with retail activities common to the area. Apart from the potential for minor localised spills of oils, fuels or cleaning products, it is considered unlikely that this landuse presents a significant area of environmental concern. Having said this, chlorinated solvents may have been used in small amounts for cleaning or degreasing.

There is no historical evidence that the site contains or previously contained underground storage tanks.

Anecdotal historical information indicated that a flood had passed through the site in the late 1890s. There is a low potential for the flood waters to have deposited materials of a contaminating nature, such as asbestos fragments, from another source site.

In summary, it is considered that, based on the examined historical information and the site inspection, the potential for significant contamination associated with the site is low.

8. Sampling, Analysis and Data Quality Objectives

8.1 Data Quality Objectives

The scope of works has been devised broadly in accordance with the seven step data quality objective (DQO) process, as defined in Australian Standard *Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds* (AS 4482.1 – 2005). The DQO process is also described in NSW EPA (2006) *Guidelines for the Site Auditor Scheme* 2nd Edition, and US EPA (2000) *Guidance for the Data Quality Objective Process and Data Quality Objectives Process for Hazardous Waste Site Investigations*. The seven step DQO process is as follows:

- State the problem
- Identify the decision
- Identify inputs into the decision
- Define the boundary of the assessment
- Develop a decision rule
- Specify acceptable limits on decision errors
- Optimise the design for obtaining data

8.1.1 State the Problem

The site has historically been used for residential and commercial (in part) purposes prior to development for commercial use and as an open air car park. The site is now proposed for redevelopment including residential and retail uses. The problem to be addressed is the potential for contamination associated with the past or present uses, the potential for saline, aggressive and acid sulphate soils, and the need for remediation or management prior to or as part of the proposed development.

8.1.2 Identify the Decision

The primary decisions to be made in completing the investigation are as follows:

- Does the site, or is the site, likely to present a risk of harm to human health or the environment under the existing and proposed land uses?
- Is the site currently suitable for the proposed use?

- Is there any potential for groundwater contamination?
- Are there any off-site migration issues to be considered?
- Are there salinity or aggressivity issues that require management?
- Are there ASS that require management?

Douglas Partne

- Is further investigation required to adequately address the abovementioned decisions?
- Is further investigation required to delineate the extent of any contamination identified?
- Does the site require remediation to ensure suitability for the proposed end use?

8.1.3 Identify Inputs into the Decision

The primary inputs into the decision are:

- available site information regarding activities undertaken on the site and the surrounding area;
- the local geology, topography and hydrology;
- Existing site operations and features, obtained through inspection;
- Soil profile information obtained through bore drilling and sampling;
- Screening results (PID and pH screening);
- Analytical results on both soil and groundwater samples;
- Assessment of analytical data / data sets against applicable published soil and groundwater assessment criteria.

8.1.4 Define the Boundary of the Assessment

The site, for the purpose of this assessment, is 12 – 14 Phillip Street and 333 Church Street, Parramatta, as depicted on Drawing 1, Appendix A.

8.1.5 Develop a Decision Rule

The decision rule is the comparison of analytical results against relevant published guideline criteria for soil and groundwater. These assessment criteria are addressed in Sections 10 and 11. Exceedance of these criteria, however, generally triggers further assessment rather than remediation.

Laboratory test results will be accepted and considered useable for this assessment under the following conditions:

- all laboratories used are accredited by NATA for the analyses undertaken;
- all practical quantitation limits (PQL) set by the laboratories fall below the assessment criteria adopted, or indicate across the board lack of detection (i.e. some of the GIL are difficult to achieve routinely by NATA accredited laboratories);
- The reported concentrations of analytes in the replicate sample pairs are within accepted limits; and

 the quality assurance / quality control (QA/QC, see Appendix G) protocols and results reported by the laboratories comply with the requirements of the NEPM 1999 "Guideline on Laboratory Analysis of Potentially Contaminated Soils" and Australian and New Zealand Environment and Conservation Council (ANZECC) 1996 "Guidelines for the Laboratory Analysis of Contaminated Soils".

8.1.6 Specify Acceptable Limits on Decision Errors

In order to ensure the quality of the soil and groundwater data, appropriate and adequate quality assurance and quality control (QA/QC) measures and evaluations should be incorporated into the sampling and analysis regime.

A field and laboratory QA/QC regime, comprising the collection and analysis of intra- and interlaboratory replicate samples was implemented to meet the requirements associated with the following data quality indicators (DQIs):

- conformance with specified holding times;
- accuracy of spiked samples within the laboratory's acceptable range (typically 70 130%) for inorganic contaminants and greater for some organic contaminants;
- field and laboratory duplicates and replicate samples will have a precision average of +/- 30% relative percentage difference (RPD) for inorganic analytes and +/- 50% RPD for organic analytes; and
- field replicates were collected at a frequency of at least 10% of all samples.

The sampling numbers adopted were based on a sampling regime which was deemed suitable for this assessment (refer Section 8.4).

The analyte selection is based on the areas of environmental concern as discussed in Section 7.

The site assessment criteria (SAC) and groundwater investigation levels (GIL) adopted from the guidelines stated in Sections 10 and 11 have risk probabilities already incorporated.

8.1.7 Optimise the Design for Obtaining Data

The sampling locations were designed to gain a general understanding of the sub-surface profile, given that there were no identified target locations prior to undertaking the fieldwork. As such, the locations were set out in a grid based pattern to provide reasonable coverage across the site (where possible). The sampling locations are presented in Drawing 1, Appendix A.

Groundwater monitoring wells were positioned so as to assess groundwater quality across the site, and to allow triangulation for the assessment of groundwater flow direction. One up gradient well (MW01) was placed in the lane way off Phillip Street, while the other two were placed on the western boundary and northern boundary adjacent to Parramatta River (MW02 and MW03).

Procedures for the collection of environmental samples were developed prior to undertaking the fieldwork, and were in accordance with Douglas Partners standard protocols, in line with OEH

guidelines and current industry practice. DP employs NATA accredited analytical laboratories to conduct sample analysis.

To optimise the selection of soil samples for analysis, soil samples were screened using a calibrated photo-ionisation detector (PID), whilst the selection of samples of sPOCAS testing was based on the results of an initial pH screen. The results of the PID readings are provided in the borehole logs in Appendix H.

Given that there were no visual indicators of soil salinity, the selection of samples for salinity and aggressivity indicator analyses was structured to essentially provide a general screen across the site (assessing horizontal trends) and with depth (assessing vertical trends).

8.1.8 Data Quality Indicators

The performance of the assessment in achieving the DQO will be assessed through the application of Data Quality Indicators (DQI), defined as follows:

- Precision: A quantitative measure of the variability (or reproducibility) of data;
- Accuracy: A quantitative measure of the closeness of reported data to the "true" value;
- Representative: The confidence (expressed qualitatively) that data are representative of each media present on site;
- **Completeness:** A measure of the amount of useable data from a data collection activity;
- **Comparability:** The confidence (expressed qualitatively) that data can be considered

equivalent for each sampling and analytical event.

Table 1 below summarises the DQIs and the procedures designed to enable achievement of the DQIs. For reference purposes, relevant sections of the report are also identified.

DQI	Achievement Evaluation Procedure				
Documentation completeness	Completion of borehole report sheets, and field and laboratory chain-of- custody (COC) documentation in Appendices H and I respectively.				
Data completeness	The sampling density is based on DP's proposal and designed to ob preliminary information.				
Data comparability	Use of NATA accredited laboratories, use of consistent sampling techniques (Appendix I).				
Data representativeness	Sampling on a broad scale basis to obtain reasonably representative data (Section 9).				
Precision and accuracy for sampling and analysis	Achievement of 30% RPD for inorganic replicate analysis and 50% for organic replicate analysis acceptable levels for laboratory QC criteria (Appendix G).				

Table 1: Data Quality Indicators

8.2 Field Quality Assurance and Quality Control

The field QC procedures for sampling, as prescribed in Douglas Partners *Field Procedures Manual* were followed during the assessment. Field QC sampling comprised replicate sampling, at a rate of approximately one replicate sample for every twenty samples. The comparative results of analysis are summarised in Appendix G.

8.3 Laboratory QA/QC

The analytical laboratory, accredited by NATA, is required to conduct in-house QA/QC procedures. These are normally incorporated into every analytical run and include reagent blanks, spike recovery, surrogate recovery and duplicate samples. These results are included in the laboratory reports in Appendix I.

The results of the DP assessment of laboratory QA/QC are shown in Appendix G, with the full laboratory reports included in Appendix I.

8.4 Sample Location and Rationale

Fieldwork was conducted between 19 and 30 September 2011. Fieldwork included drilling and soil sampling on 19, 20, 22 and 23 September, while groundwater well development and sampling was conducted on the 27 and 30 September 2011. Boreholes are referenced as BH, while groundwater wells are identified as MW.

A total of 14 boreholes were proposed to be drilled across the site in a general grid based pattern and targeting obvious areas of contamination. The NSW EPA *Sampling Design Guidelines* (1995) indicate that the sampling density for a site of 0.56 hectares is 14 sampling locations for site 'characterisation'. Two of these locations were to be placed within 333 Church Street, dependent on headroom and access constraints. Due to access constraints associated with headroom and the storage of equipment, only one location was able to be completed within the building loading dock. Therefore 13 boreholes were constructed across the site, which DP considers to still be in general accordance with the guidelines. Further sampling beneath the existing building, once demolished, is recommended for completion and verification of the findings of this investigation.

Soil samples were collected from each of the borehole locations. Selected samples were analysed for a range of analytes, as described in Section 9.7. These samples were selected based on site observations (odour, staining etc), PID readings and their position within the borehole (i.e. fill or natural).

The groundwater monitoring wells were positioned across the site in order to ascertain the inferred groundwater direction. One well was placed up gradient on the site (MW03) and two wells were placed down gradient (MW01 and MW02). Based on the groundwater levels and levels of the groundwater wells, the groundwater flow is inferred to be north to north west.

The bore and groundwater monitoring well locations are shown on Drawing 1, Appendix A.

8.5 Soil Sampling Procedures

Environmental sampling was performed according to standard procedures outlined in the DP *Field Procedures Manual.* All sampling data was recorded on DP COC sheets. The general soil sampling procedure comprised:

- Decontamination of all re-useable sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and distilled water prior to collecting each sample or use of disposable sampling equipment;
- Transfer of samples into laboratory-prepared glass jars and capping immediately with Teflon lined lids;
- Collection of at least 5% replicate samples for QA/QC purposes;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth; and
- Placement of the sample jars and replicate sample bags into a cooled, insulated and sealed container for transport to the laboratory.

Envirolab Services Pty Ltd, accredited by NATA, was employed to conduct the primary sample analysis. SGS Laboratories was employed for secondary sample analysis. Both laboratories are required to carry out in-house QC procedures.

8.6 Groundwater Monitoring Well Construction and Sampling Details

Three groundwater monitoring wells (MW01, MW02 and MW03) were installed across the site to a maximum depth of 7.0 m bgl (MW03). MW03 was located up gradient, while MW01 and MW02 were located down gradient, towards Parramatta River. Groundwater monitoring well installation details are provided in the borehole logs (Appendix H).

The groundwater monitoring well was constructed using 50mm diameter, acid washed, class18 PVC casing and machine slotted well screen intervals. Joints were screw threaded, thereby avoiding the use of glues and solvents which may contaminate the groundwater. The well was completed with a gravel pack and, thence, a bentonite plug of at least 0.5 m thickness. The well was capped and a Gatic cover installed level with the current ground surface.

An inspection of the groundwater wells was conducted on 27 and 30 September 2011, using an electronic interface probe which confirmed the presence of water within the wells. The electronic interface probe can detect the presence of separate phase liquid in the water column (such as light non-aqueous phase liquids [LNAPL] including petroleum hydrocarbons) and determine water level. Well details are provided in Table 2 below.

Bore ID	Location of Well	Bore Depth (m bgl)	AHD (m)	Screen Interval (m bgl)	Pre- development SWL (m bgl)	Well Volume (L)	Volume Developed (L)	Pre- purge SWL (m bgl)	Purging Method
MW01	Northern boundary	5.0	6.641	2.0–5.0	3.67	8.33	5 – dry	3.65	Bailer
MW02	Western boundary	7.0	8.504	4.0–7.0	5.05	13.42	4.5 – dry	5.05	Bailer
MW03	Southern end	6.0	8.828	3.0–6.0	5.10	3.64	2 – dry	5.08	Bailer

Table 2: Groundwater Monitoring Well Details

Subsequent to installation, the groundwater monitoring wells were developed by purging until dry. The bores were allowed to stabilise for three days prior to sampling. Before sampling, the depth to groundwater was determined using the electronic interface dip-meter.

Samples were collected using a Geopump, with dedicated disposable tubing used for each well. Water quality parameters were collected as part of the process.

Groundwater samples were filtered in the field for heavy metal analysis on the same day as sampling. Sample handling and transport procedures were as set out below:

- Sample containers were labelled with individual and unique identification, including project number and sample number;
- Samples were placed in insulated containers and maintained at a temperature of approximately 4°C until transported to the analytical laboratory; and
- COC documentation was maintained at all times and countersigned by the receiving laboratory on transfer of samples.

Samples were despatched to Envirolab Services and SGS Laboratories, both NATA accredited laboratories, for analysis.

8.7 Analytical Rationale

8.7.1 Contamination Assessment

As discussed in Section 7 the identified areas of environmental concern (AEC) relate to filling, past commercial (retail) uses and the past demolition of old buildings. The analytical scheme was designed to address these AEC, through the following targets:

Imported filling:Heavy Metals, TPH, BTEX, PAH, OCP, OPP, PCB, Phenols, AsbestosFormer buildings:Lead, AsbestosCommercial use:Heavy Metals, TPH, BTEX, PAH, VOC

The analytical scheme adopted is presented in Table 3 for soil and Table 4 for groundwater.

Sample ID	Heavy Metals	BTEX/ TPH	OCP/ OPP	PCB	РАН	Phenol	Asbestos	VOC
MW01/0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MW01/2.5-2.6	\checkmark	\checkmark			\checkmark			
MW02/0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Dup02 dup of		al						
MW02/0.5-0.6	v	N			N			
MW02/1.0-1.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
MW03/0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH01/0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH01/0.5-0.6								
BH01/1.0-1.1	\checkmark	\checkmark			\checkmark			
Dup08 dup of		al						
BH01/1.0-1.1	v	N			N			
BH02/0.4-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH02/1.0-1.1	\checkmark	\checkmark			\checkmark			
BH03/0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH04/1.0-1.1	\checkmark	\checkmark			\checkmark			
BH05/0.4-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH06/0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH07/0.8-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH08/0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Dup04 dup of	al	ما			2			
BH08/0.1-0.2	v	v			v			
BH09/0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH09/1.0-1.1	\checkmark	\checkmark			\checkmark			
BH10/0.5-0.6					\checkmark			
BH10/1.0-1.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH10/1.7-1.8			\checkmark		\checkmark			

Table 3: Analytical Scheme for Soil

Table 4: Analytical Scheme for Groundwater

Sample ID	Heavy Metals	BTEX/ TPH	ОСР	РСВ	РАН	VOC	Hardness
MW01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MW02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MW03	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Dup01	\checkmark	\checkmark					

8.7.2 Salinity and Aggressivity Assessment

The analytical scheme for the salinity and aggressivity assessment was designed to obtain an indication of the potential presence and severity of saline and/or aggressive soils across the site. This was achieved through analysing a selection of samples (spaced across the site and at various depths) for indicator parameters including electrical conductivity (EC1:5), pH, chloride, sulphate, and Exchangeable Sodium (ES). The analytical scheme adopted is presented in Table 5 below.

Sample ID	pH	EC	Chloride	Sulphate	ESP
MW01/0.5-0.6	\checkmark	\checkmark	\checkmark		\checkmark
MW01/2.0-2.1	\checkmark	\checkmark			
MW02/1.0-1.1	\checkmark	\checkmark			
MW03/0.5-0.6	\checkmark	\checkmark			
BH1/0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH3/1.0-1.1	\checkmark	\checkmark	\checkmark	\checkmark	
BH4/1.5-1.6	\checkmark	\checkmark			
BH5/0.4-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH6/1.1-1.2	\checkmark	\checkmark			
BH7/0.8-1.0	\checkmark	\checkmark			
BH8/0.3-0.4	\checkmark	\checkmark			
BH8/2.0-2.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH9/1.0-1.1		\checkmark			
BH10/0.5-0.6		\checkmark			
BH10/1.7-1.8		\checkmark	\checkmark		

Table 5: Analytical Scheme (Salinity)

8.7.3 Acid Sulphate Soil Assessment

Acid sulphate soils are commonly associated with sedimentary deposits, such as those associated with creeks, rivers and other water bodies. As such, should acid sulphate soils be present at the site they would most likely be prevalent closest to the river banks. As there was no practical access for a drilling rig in close proximity to Parramatta River, the closest of the bores to the river banks were selected for pH screening.

On the basis of the pH testing, selected 'worst case' samples were submitted to Envirolab for SPOCAS (Peroxide Oxidation Combined Acidity and Sulphate) testing.

The following Table 6 lists the samples that were pH screened and analysed for sPOCAS.

Sample ID	pH Screening	sPOCAS
MW01/0.5-0.6		
MW01/1.0-1.2		
MW01/1.5-1.6		
MW01/2.0-2.1		
MW01/2.5-2.6		
MW01/3.0-3.1		
MW01/4.0-4.1	\checkmark	\checkmark
MW02/0.5-0.6		
MW02/1.0-1.1		
MW02/1.5-1.6		
MW02/2.0-2.1		
MW02/2.5-2.6		
MW02/3.0-3.1		
MW02/4.0-4.1		
MW02/5.0-5.1		

 Table 6: pH Screening and Analytical Scheme (ASS)

9. Site Assessment Criteria

9.1 Contamination Assessment

The proposed development of site includes a residential component in the form of apartments. Part of the site will also be used for retail and general public access. As a result, the soil analytical data is compared to the health based investigation levels (HILs) for residential development with minimal soil access (HIL D) and parks and recreational open space (HIL C), sourced from the DEC publication *Guidelines for the NSW Site Auditor Scheme* (2006), Appendix II. These HILs are adopted as the primary site assessment criteria (SAC).

In the absence of available HILs, the following SAC are adopted:

- For TPH and BTEX, the threshold concentrations for sensitive land uses, sourced from the NSW EPA *Guidelines for Assessing Service Station Sites* (1994); and
- For asbestos, in the absence of a current acceptance criteria, the SAC is no visible asbestos fragments and no asbestos fibres in soil.

The adopted SAC are listed on the following Table 7.

Contaminant	SAC (mg/kg)		Rationale
TPH ^a			
$C_{6} - C_{9}$	65		
$C_{10} - C_{36}$	1000		A NSW EPA (now OEH) Contaminated
BTEX ^a			sites Guidelines for assessing service
Benzene		1	concentrations for sensitive land use-
Toluene	1.4		soils.
Ethylbenzene	3	.1	
Xylene	1	4	
Matala	HIL D	HIL C	
	400	200	
	80	40	
Cadmium	48%	24%	
Chromium	4,000	2,000	
Copper	1200	600	
Lead	60	30	
Mercury	2400	1200	NSW DEC (now OEH) Contaminated
Nickel	28,000	14,000	sites Guidelines for the NSW Site Auditor
Zinc	34,000	17,000	Scheme (2 nd Edition) (2006) Appendix II,
Total Phenols	80	40	redevelopment sites in NSW Health-
РАН			based investigation levels for residential
Total	4	2	(HIL D) and parks and recreational open
Benzo(a)Pyrene	80	40	space (HIL C)
РСВ	40	20	
OCP			
Aldrin + dieldrin			
Chlordane	40	20	
DDT (including DDD, DDE, DDT)	200	100	
Heptachlor	800	400	
Asbestos	No asbestos fragments and no asbestos fibres in soil		Current industry approach

Table 7: Site Acceptance Criteria for Soil

For analytes in which there are no listed SAC (e.g. OPP and VOC), the laboratory PQL will be taken as the trigger level, above which further assessment will be required.

9.2 Salinity and Aggressivity Assessment

Soil salinity is often assessed with respect to electrical conductivity of a 1:5 soil:water extract (EC 1:5). This value can be converted to ECe (electrical conductivity of a saturated extract) by multiplication with a factor dependent of soil texture ranging from 6 - 17 depending on soil type. Richards (1954) and Hazelton and Murphy (1992) classify soil salinity on the basis of ECe, and describe the implications of the salinity classes on agriculture as summarised in Table 8.

Table 8: Soil Salinity Classification

Class	ECe (dS/m)	Implication
Non-Saline	<2	Salinity effects mostly negligible
Slightly Saline	2 – 4	Yields of sensitive crops affected
Moderately Saline	4 – 8	Yields of many crops affected
Very Saline	8 – 16	Only tolerant crops yield satisfactorily
Highly Saline	>16	Only a few very tolerant crops yield satisfactorily

Note: This classification scheme is based on agricultural sensitivity. At this point in time, no structure-based classification system exists.

The classification of soil aggressivity has been based on AS 2159 – 2009 *Piling Design and Installation* and relevant exposure classifications are summarised in Tables 9 and 10.

Table 9:	Exposure	Classification	for	Concrete	Piles
----------	----------	----------------	-----	----------	-------

Ex	posure conc	litions	Exposure Classification (Aggressivity)
Sulfates SO ₃ ppm	рН	Chlorides ppm (in water)	Soil conditions – B (relatively low permeability soils above groundwater)
4000	>5.5	<6000	Non-aggressive
4000 - 8000	4.5 – 5.5	6000 – 12000	Mild
8000 – 16000	4 – 4.5	12000 – 30000	Moderate
>16000	<4	>30000	Severe

E	posure con	ditions	Exposure Classification (Aggressivity)
Chlorides in Soil (ppm)	рН	Resistivity Ohm-cm	Soil conditions – B (relatively low permeability soils above groundwater)
<5000	>5	>5000	Non-aggressive
5000 – 20000	4 - 5	2000-5000	Non-aggressive
20000 – 50000	3 - 4	1000-2000	Mild
>50000	<3	<1000	Moderate

Table 10: Exposure Classification for Steel Piles

The sodicity of soil (proportion of exchangeable sodium cations as a percentage of total exchangeable cations) can be elevated due to salt content and can affect properties such as dispersion, erodibility and permeability. Sodic soils may be affected by very severe surface crusting, very low infiltration and hydraulic conductivity, very hard and dense subsoils, high susceptibility to gully erosion and tunnel erosion. Sodicity also affects the shrink-swell properties of a soil. The general rating of sodicity (after McNally, 2005) is given in Table 11.

Table 11 – Sodicity Rating

ESP%	Rating
<5	Non-sodic
5 – 15	Sodic
>15	Highly sodic

9.3 Acid Sulphate Soils

Acid Sulphate Soils (ASS) are naturally occurring sediments containing iron sulphides, primarily pyrite, commonly deposited in estuarine environments. The occurrence of ASS is associated with areas or regions that have previously been or are currently estuarine environments. Due to changes in sea level or geomorphologic changes to the coastal systems, these sediments are often overlaid by terrestrial sediments.

When ASS are exposed to air (e.g. due to bulk excavation or dewatering), the oxygen reacts with iron sulphides in the sediment, producing sulphuric acid. This acid can be produced in large quantities and is highly mobile in water. The sulphuric acid can drain into waterways causing severe short and long term socio-economic and environmental impacts, including damage to man made structures and natural ecosystems.

ASS can either be classified as 'actual acid sulphate soils' (AASS) which are soils that have already reacted with oxygen to produce acid, or 'potential acid sulphate soils' (PASS). PASS are soils containing iron sulphide that have not been exposed to oxygen (e.g. soils below the water table). PASS therefore have not produced sulphuric acid, but have the potential to do so if exposure to oxygen occurs.

In New South Wales, development occurring in acid sulphate soils is governed and managed by Local Environmental Plans, the Acid Sulphate Soils Management Advisory Committee Planning Guidelines and the Acid Sulphate Soils Manual developed by the Acid Sulphate Soils Management Advisory Committee (ASSMAC).

Samples were screened prior to laboratory analysis to assess for the possible presence of actual acid sulphate soil (AASS) or potential acid sulphate soil (PASS). These results were compared against the NSW Acid Sulphate Soils Management Advisory Committee (ASSMAC) *Acid Sulphate Soils Assessment Guidelines* (1998) guidance indicators, namely:

- pH_F ≤ 4 strongly indicates oxidation has occurred in the past and that AASS are likely to be present;
- pH_{FOX} < 3.5 (but preferably pHFOX <3), plus preferably one or more of a pH_{FOX} reading at least one pH unit below the corresponding pH_F, a strong reaction with peroxide, change in soil colour from grey tones to brown tones or release of sulphurous gases, strongly indicates the presence of PASS.

On the basis of the pH testing, selected 'worst case' samples were submitted to Envirolab for SPOCAS (Peroxide Oxidation Combined Acidity and Sulphate) testing. The results of analysis are summarised in Table 1 and compared with action criteria specified in ASSMAC *Acid Sulphate Soils Assessment Guidelines* (1998).

10. Groundwater Investigation Levels

The levels of contaminants in groundwater were assessed against Groundwater Investigation Levels (GILs) adopted from applicable guidelines, specifically, the ANZECC (2000) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. As the receiving body for groundwater at the site is likely to be a marine water body (i.e. Parramatta River leads to Botany Bay and the Tasman Sea), the trigger values (where available) for the protection of 95% of marine water species, as stipulated in the ANZECC (2000), were considered relevant.

Given that no drinking water bores were registered in close proximity to the site (i.e. through the registered bore search) and the region surrounding the site is mixed residential / commercial, it is considered unlikely that the regional groundwater would be used for drinking purposes. Use of the groundwater for industrial purposes is considered a possibility, however, the threshold levels applicable to this use are typically higher than for other beneficial uses. On this basis, the Trigger Values (where available) for the protection of 95% of marine water species were adopted as the primary GILs.

The Airports (Environment Protection Regulations) criteria have been adopted for TPH $C_6 - C_{36}$ contaminants, due to the absence of high reliability NSW EPA or ANZECC Guidelines for TPH.

The levels of contaminants in the groundwater are assessed against the GILs shown in Table 12.

Contaminant	Adopted Criteria (GIL, µg/L)	Source
ТРН		Airport (Environment Protection Regulations (1997), Schedule 2 Water Pollution Accepted Limits: Table 1.03
$C_{6} - C_{9}$	150	 Accepted limits of contamination have been adopted as
>C ₉	600	screening thresholds [adopted due to the absence of high reliability NSW EPA or ANZECC guidelines for TPH]*
BTEX		
Benzene	300	NSW EPA Contaminated Sites Guidelines for Assessing
Toluene	300	Service Station Sites (1994) Threshold concentrations for
Ethylbenzene	140	sensitive land use.
Xylene	380	
Metals		
Arsenic (III)	2.3	ANZECC (2000) Australian Water Quality Guidelines
Cadmium	5.5	for the protection of 95% of marine water species
Chromium	4.4 ¹	
Copper	1.3	
Lead	4.4	
Mercury	0.4	
Nickel	70	
Zinc	15	
OCP		
Heptachlor	0.00042	
Aldrin	0.0004	
Lindane	0.003	
Chlordane (trans +	0.001^2	
cis)	0.001	
Dieldrin	0.005^2	
DDE	0.00042	
DDT	0.0004	
Endrin	0.000^{2}	
alpha Endosulphan	0.0002	
beta Endosulphan	0.007	
Methoxychlor	0.004	

Table 12: Groundwater Investigation Levels

Contaminant	Adopted Criteria (GIL, µg/L)	
PCB		
Arochlor 1016	0.009 ²	
Arochlor 1221	1 ²	
Arochlor 1232	0.3 ²	1
Arochlor 1242	0.6 ²	
Arochlor 1248	0.03 ²	
Arochlor 1254	0.03 ²	
Arochlor 1260	25 ²	
Phenols		
Phenol	400	
Pentachlorophenol	22	
PAH		
Total	Not specified	
Benzo(a)pyrene	0.1 ²	
Naphthalene	70	
Anthracene	0.01 ²	
Phenanthracene	0.6 ²	
Fluoranthene	1 ²	

Notes:

* Other than a 'low reliability' final chronic value of 7µg/L for petroleum hydrocarbon, which is not routinely achievable by NATA laboratories due to inability to meet the required detection limits.

1 Low reliability trigger value for chromium (III) (Section 8.3.7 of ANZECC 2000)

2 Low reliability trigger value (Section 8.3.7 of ANZECC 2000). Insufficient data for reliable trigger value. Interim working value or low reliability value used for screening purposes.

The laboratory practical quantitation limits (PQL) are taken as the initial screening level for VOCs. Should there be detected concentrations of VOC, then ANZECC, 2000 low reliability trigger values will be used (where available). In the absence of such trigger levels, appropriate national or international guidelines will be referenced.

11. Results

11.1 Field Observations – Soil

Fill was observed at all bore locations to a maximum depth of 2.5 m bgl (MW01). Fill across the site comprised generally of silty sandy fill with roadbase gravel, trace brick fragments, and specific finds of pottery (BH105), asbestos cement pipe and fragments (BH107). Ash was noted in soil from BH102, BH103, BH106, BH107, BH110 and MW101. A burnt out area (possibly fire effected) was observed BH110 at 1.9 m. No odour was observed from any of the samples.

Natural soil was encountered underlying the fill and was noted to comprise mainly orange brown or yellow silty sand.

Reference should be made to the bore logs in Appendix H.

11.2 Soil Field Testing Results

Replicate samples were collected in plastic bags, and were allowed to equilibrate under ambient temperatures before screening for Total Photoionisable Compounds (TOPIC), using a calibrated Photoionisation Detector (PID). Results of the samples screening indicated that all samples had concentrations below 1 ppm. The low readings collected are indicative of Australian soil background levels, and do not indicate the presence of TOPIC.

11.3 Field Observations – Groundwater

Groundwater levels were measured prior to purging on 26 and 30 September 2011. The well depths and depth to groundwater are listed in Table 2, Section 9.6. No free phase product was detected by the interface dip-meter during sampling. At the time of purging, no odour was observed in the groundwater.

11.4 pH Screening

The pH screening results are used for indicative purposes only and no firm criteria are applicable. General comparative values for pH screening are provided by ASSMAC, however it is noted that these may provide a false indication due to potential presence of inclusions in the soil (e.g. organic matter, shells) that may affect the pH values. In general, however, a substantial drop in pH value typically suggests elevated potential for presence of ASS.

The pH_F (distilled water) values for the screened samples ranged between 8.1 and 10.2 (all greater than 4), whilst the pH_{FOX} (oxidised) values ranged between 5.7 and 10.1 (all greater than 3.5). As such the pH screening provided no real indicators of AASS or PASS.

11.5 Laboratory Results

The laboratory results are summarised in the following Tables 13 (soil contamination), 14 (groundwater contamination) and 15 (salinity and aggressivity). The NATA accredited full laboratory certificates are provided in Appendix I.

Table 13: Results of Soil Analysis (All results in mg/kg unless otherwise stated)

					Heavy	Metals				Poly Aro Hydro (P	cyclic matic carbons AH)	Total Pe Hydroc (TF	etroleum arbons PH)	Mo Hyc	nocycli Irocarb	c Arom ons (BT	atic EX)	Pesticides	us Pesticides		olics		
Sample ID	Sampling Date	Arsenic	Cadmium	Chromium ⁴	Copper	Lead	Mercury	Nickel	Zinc	Benzo (a) pyrene	Total PAH ⁵	6 2- 93	C10-C36	Benzene	Toluene	Ethyl- benzene	Total Xylene	Organochlorine I (OCP) ⁷	Organophosphorol (OPP)	PCB ⁷	Total Pheno	VOC	Asbestos
72628.00 - 12-14	Phillip and 3	33 Chu	rch Stre	ets, Par	rramatta				1	I			1	1				1				1	
MW01/0.5-0.6	19/09/2011	4	10	120	240	150	0.7	100	160	1.0	16.0	<25	<250	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos. trace respirable fibres detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos. trace respirable fibres detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos. trace respirable fibres detected</td></pql<></td></pql<>	<5.0	<pql< td=""><td>chrysotile & amosite asbestos. trace respirable fibres detected</td></pql<>	chrysotile & amosite asbestos. trace respirable fibres detected
MW01/2.5-2.6	19/09/2011	<4	<0.5	6	9	51	0.2	4	46	0.25	3.15	<25	<250	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
MW02/0.5-0.6	19/09/2011	<4	<0.5	3	3	4	<0.1	3	5	0.08	0.68	<25	<250	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<>	<5.0	<pql< td=""><td>NAD</td></pql<>	NAD
Dup02	19/09/2011	<4	<0.5	4	3	11	<0.1	2	9	< 0.05	<pql< td=""><td><25</td><td><250</td><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<25	<250	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
MW02/1.0-1.1	19/09/2011	<4	<0.5	2	3	5	<0.1	2	5	< 0.05	<pql< td=""><td><25</td><td><250</td><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<25	<250	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<>	<5.0	-	NAD
MW03/0.5-0.6	20/09/2011	<4	<0.5	54	24	71	0.3	14	100	<0.05	<pql< td=""><td><25</td><td><250</td><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<25	<250	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<>	<5.0	<pql< td=""><td>NAD</td></pql<>	NAD
BH01/0.2-0.3	23/09/2011	<4.0	<0.5	150	34	6	<0.1	120	63	< 0.05	0.2	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td><pql< td=""><td>NAD</td></pql<></td></pql<>	<5.0	<pql< td=""><td>NAD</td></pql<>	NAD
BH01/1.0-1.1	23/09/2011	<4.0	<0.5	8	6	9	<0.1	4	12	< 0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
Dup08	23/09/2011	<4.0	<0.5	8	6	9	<0.1	4	11	< 0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
BH02/0.4-0.5	23/09/2011	<4.0	<0.5	4	3	7	<0.1	2	7	< 0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<>	<5.0		NAD
BH02/1.0-1.1	23/09/2011	<4.0	<0.5	5	3	5	<0.1	2	7	< 0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
BH03/0.5-0.6	22/09/2011	<4.0	<0.5	4	8	39	0.1	3	12	<0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<>	<5.0		NAD
BH04/1.0-1.1	22/09/2011	<4.0	<0.5	1	2	2	<0.1	<1.0	4	< 0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
BH05/0.4-0.5	22/09/2011	10	1.9	16	58	630	2.3	9	1300	0.54	4.54	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<>	<5.0		NAD
BH06/0.2-0.3	23/09/2011	5	0.5	12	34	510	0.4	6	220	0.11	0.31	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td></td><td>NAD</td></pql<>	<5.0		NAD
BH07/0.8-1.0	22/09/2011	6	4	26	1500	220	0.2	92	460	0.23	2.73	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td><pql< td=""><td>chrysotile & amosite asbestos</td></pql<></td></pql<>	<5.0	<pql< td=""><td>chrysotile & amosite asbestos</td></pql<>	chrysotile & amosite asbestos
BH08/0.1-0.2	22/09/2011	<4.0	<0.5	140	32	6	<0.1	120	62	<0.05	0.2	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<>	<5.0	-	NAD
Dup04	22/09/2011	<3	0.6	120	29	6	<0.05	110	78	<0.1	1.1	<20	<120	<0.1	<0.1	<0.1	<0.2	-	-	-	-	-	-
BH09/0.5-0.6	23/09/2011	<4.0	<0.5	5	4	1	<0.1	3	/ 	<0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td><5.0</td><td>-</td><td>NAD</td></pql<>	<5.0	-	NAD
BH09/1.0-1.1	23/09/2011	<4.0	<0.5	3	2	4	<0.1	2	5	<0.05	<pql< td=""><td><25</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	-
BH10/0.5-0.6	23/09/2011	<4.0	<0.5	13	1	62	0.2	2	31	0.27	2.87	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></pql<>	<0.2	<0.5	<1.0	<2.0	-	-	-	-	-	
BH10/1.0-1.1	23/09/2011	<4.0	<0.5	0	<1.0	4	<0.1	1	1	<0.05	<pql< td=""><td><20</td><td><pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td></td><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<></td></pql<>	<20	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td><td><pql< td=""><td><pql< td=""><td></td><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<></td></pql<>	<0.2	<0.5	<1.0	<2.0	<pql< td=""><td><pql< td=""><td></td><td><5.0</td><td>-</td><td>NAD</td></pql<></td></pql<>	<pql< td=""><td></td><td><5.0</td><td>-</td><td>NAD</td></pql<>		<5.0	-	NAD
TR1	23/09/2011	4	<0.5	14	14	20	<0.1	5	10	<0.05	< F QL	<25		<0.2	<0.5	<1.0	<2.0				<3.0		NAD
TS1	22/09/2011	-		-							-	-25	-	104%	104%	107%	107%	-	-		-	-	
TR2	23/09/2011		-						-			<25	-	<0.2	<0.5	<10	<20	-	-	-	-	_	
TS2	23/09/2011	-	-	-	-	-	-	-	-	-	-	-	-	105%	105%	102%	102%	-	-	-	-	-	-
			1		1				1	1			1					1				1	
PQL		4	0.5	1	1	1	0.1	1	1	0.05	0.1	25	250	0.5	0.5	1	3	0.1	0.1	1	5	1	-
Site Assessment	t Criteria (SA	C)	I						r	I			1	1	1			1					
HIL D for Reside Minimal Access	ntial with Landuse ¹	400	80	48%	4000	1200	60	2400	28000	4	80	65	1000	1	1.4/130	3.1/50	14/25	40/200/800/40 ⁶	-	40	80	-	nil
HIL C for parks, open space ar fields, including schools lan	recreational nd playing J secondary nd use ²	200	40	200	2000	600	30	600	14000	2	40	-	-	-	-	-	-	20/100/400/20 ⁶	-	-	40	-	NAG
NSW EPA Serv Guidelin	ice Station nes ³	-	-	-	-	-	-	-	-	-	-	65	1000	1	1.4	3.1	14	-	-	-	-	-	NAG

Notes

7

NSW DEC Contaminated Sites: Guidelines for the NSW Site Auditors Scheme 2nd edition, 2006. Health-based guidelines for residential with minimal access land use (Column D) 1

NSW DEC Contaminated Sites: Guidelines for the NSW Site Auditors Scheme 2nd edition, 2006. Health-based guidelines for recreational open space and playing fields, including secondary schools land use (Column D) 2 NSW EPA (1994) Contaminated Sites Guidelines for Assessing Service Station Sites threshold concentrations for sensitive land use 3

All Chromium are assumed to exist in the stable Cr(III) oxidation state, as Cr(VI) will be too reactive and unstable under the normal environment

4 All PQLs are 0.1, with the exception of benzo(b+k)fluoranthene where PQL is 0.2 5

Aldrin+Dieldrin/Chlordane/DDD+DDE+DDT/Heptachlor 6

ANZECC/NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Environmental Soil Quality Guidelines Background A [ANZECC A];

Not Tested

NAG No Asbestos Detected at the reporting limit of 0.1g/kg

Table 14: Results of Groundwater Analysis (All results in µg/L unless otherwise stated)

Sample ID Sampling Date 72628.00 - 12-14 Phillip and 333				Heavy	Metals ⁴				Polycyclic Aromatic Hydrocarbons (PAH) ⁴			Control Contro		Monocyclic Aromatic Hydrocarbons (BTEX)		itic EX)	Organochlorine Pesticides (OCP) ⁴							PCB ⁴							Hardness							
	Arsenic	Cadmium	Chromium ¹	Copper	Lead	Mercury	Nickel	Zinc	Benzo (a) pyrene	Napthalene	Total PAH ²	C6-C9	C10-C36	Benzene	Toluene	Ethyl- benzene	Total Xylene	Heptachlor	Aldrin	Lindane	Chlordane trans + cis	dieldrin	DDE	DDT	Endrin	alpha Endosulphan	beta Endosulphan	Methoxychlor	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	VOC	mgCaCO ₃ /L	
72628.00 - 12-14	Phillip and 3	33 Chur	ch Stree	ts, Pari	ramatta																																	
MW01	30/09/2011	2	<0.1	2	4	<1	0.1	2	14	<1	<1	<pql< td=""><td><10</td><td><250</td><td><1</td><td><1</td><td><1</td><td><2</td><td><0.2</td><td><0.2</td><td>-</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><pql< td=""><td>130</td></pql<></td></pql<>	<10	<250	<1	<1	<1	<2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<2	<2	<2	<2	<2	<2	<pql< td=""><td>130</td></pql<>	130
MW02	30/09/2011	<1	<0.1	1	3	<1	<0.1	1	9	<1	<1	<pql< td=""><td><10</td><td><250</td><td><1</td><td><1</td><td><1</td><td><2</td><td><0.2</td><td><0.2</td><td>-</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><pql< td=""><td>110</td></pql<></td></pql<>	<10	<250	<1	<1	<1	<2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<2	<2	<2	<2	<2	<2	<pql< td=""><td>110</td></pql<>	110
Dup01	30/09/2011	<1	<0.1	<1	<1	<1	<0.1	<1	4	-	-	-	<10	<250	<1	<1	<1	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW03	30/09/2011	<1	<0.1	4	2	<1	<0.1	3	6	<1	<1	<pql< td=""><td><10</td><td><250</td><td><1</td><td><1</td><td><1</td><td><2</td><td><0.2</td><td><0.2</td><td>-</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><pql< td=""><td>140</td></pql<></td></pql<>	<10	<250	<1	<1	<1	<2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<2	<2	<2	<2	<2	<2	<pql< td=""><td>140</td></pql<>	140
										•																												
PQL		1	0.1	1	1	1	0.1	1	1	0.1	0.1	0.1	10	250	1	1	1	2	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	1	0.05
Trigger Values Water GIL Level of Pro	- Marine 95% otection	2.3	5.5	4.4	1.3	4.4	0.4	70	15	0.1	70	NA	150 ²	600 ²	300 ³	300 ³	140 ³	380 ³	0.0004*	0.003*	0.007*	0.001*	0.01*	0.0005*	0.0004*	0.008	0.0002*	0.007*	0.004*	0.009*	1*	0.3*	0.6*	0.03*	0.03*	25*	0.3*	NA

Notes

Low reliability trigger value (section 8.3.7 of ANZECC 2000). Insufficient data for reliable trigger value. Interim working value used for screening purposes. Low reliability trigger value (section 8.3.7 of ANZECC 2000) for chromium III *

1

2 Airport (Environment Protection) Regulations (1997), Schedule 2 Water Pollution Accepted Limits: Table 1.03 - Accepted Limits of contamination.

NSW EPA Contaminated Sites *Guidelines for Assessing Service Station Sites* (1994), threshold concentrations for sensitive land use. ANZECC (2000) *Australian Water Quality Guidelines* for the protection of 95% of marine water species. 3

4

-Not Tested

NA Not Applicable

BOLD Exceedence of Groundwater Investigation Level (GIL)

Bore	Sample	рН	Chloride	Sulphate	Aggre	ssivity	ESP	Sodicity	Soil Texture Group	Textural	EC _{1:5}	EC _e	Salinity Class
	Depth			SO ₄	To Concrete	To Steel		Class		Factor [M]	[Lab.]	[M x EC _{1:5}]	
	(m)		(ppm)	(ppm)	[AS2	159]	(%)			[DLWC]	(µS/cm)	(dS/m)	[Richards 1954]
MW1	0.5-0.6	9.8	28	310	Non-Aggressive	Non-Aggressive	2.9	non sodic	Loam	10	310	3.1	Slightly Saline
	2.0-2.1	9.5	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	620	6.2	Moderately Saline
MW2	1.0-1.1	9.0	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	80	0.8	Non Saline
MW3	0.5-0.6	9.5	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	240	2.4	Slightly Saline
BH1	0.5-0.6	8.2	17	23	Non-Aggressive	Non-Aggressive	3	non sodic	Clay loam	9	86	0.8	Non Saline
BH3	1.0-1.1	8.2	3	22	Non-Aggressive	Non-Aggressive	NT	-	Clay loam	9	49	0.4	Non Saline
BH4	1.5-1.6	7.4	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	30	0.3	Non Saline
BH5	0.4-0.5	8.0	6	17	Non-Aggressive	Non-Aggressive	<1	non sodic	Loam	10	100	1.0	Non Saline
BH6	1.1-1.2	7.7	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Sandy loam	14	48	0.7	Non Saline
BH7	0.8-1.0	10.6	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	460	4.6	Moderately Saline
BH8	0.3-0.4	6.9	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	340	3.4	Slightly Saline
	2.0-2.1	4.7	16	190	Mild	Non-Aggressive	1.3	non sodic	Sandy loam	14	190	2.7	Slightly Saline
BH9	1.0-1.1	7.9	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	42	0.4	Non Saline
						00							
BH10	0.5-0.6	6.9	NT	NT	Non-Aggressive	Non-Aggressive	NT	-	Loam	10	180	1.8	Non Saline
	1.7-1.8	7.3	13	71	Non-Aggressive	Non-Aggressive	NT	-	Light medium clay	8	130	1.0	Non Saline

ESP = Exchangeable Sodium Percentage (sodicity)

EC_{1.5}= Electrical Conductivity (!:5 Soil/Water suspension)

M = Multiplier factor based on soil texture

 $EC_e = Electrical Conductivity = EC_{1.5} * M$

NT = Not Tested

12. Discussion

12.1 Soil Investigation

A series of soil samples, collected by DP, were analysed as part of the investigation of the site for organic and inorganic contaminants. The results are summarised on Table 13, Section 11.5.

The results of the soil analyses indicate that the organic and inorganic contaminant concentrations in all but one analysed soil sample were within the adopted SAC. The sample BH05/0.4-0.5 was found to have a lead concentration of 630 mg/kg, above the HIL C of 600 mg/kg. The concentration of lead was below the criteria for residential with minimal access to soils (HIL D). The source of the lead may be the filling or lead based paints used on former structures.

Two samples returned positive results for asbestos. MW01/0.5-0.6 was found to have chrysotile and amosite asbestos with trace respirable fibres detected. BH07/0.8-1.0 was also found to have chrystotile and amosite asbestos, but with no respirable fibres. The asbestos may be sourced from:

- A possible asbestos pipe passing in close proximity to the two bores;
- Asbestos in the filling; and/or
- Residual asbestos resulting from the demolition of former structures.

12.2 Groundwater Investigation

Three groundwater monitoring wells were installed across the site to enable the sampling and analysis of groundwater. The results are summarised on Table 14, Section 11.5.

The results of the groundwater analysis indicate that organic and inorganic contaminant concentrations were within the adopted GIL, with the exception of copper in MW01 (4 μ g/L), MW02 (3 μ g/L) and MW03 (2 μ g/L), exceeding the GIL 1.3 μ g/L. The elevated copper level is considered to be indicative of background levels and is therefore not considered to be significant.

12.3 Acid Sulphate Soil Investigation

The laboratory results for the ASS assessment are summarised in the following Table 16. The NATA accredited full laboratory certificates are provided in Appendix I.

	S-POCAS Results														
Sample		pH^		Ac	id Trail (H⁺/tonne	mol e)	Sulp	Retained Acidity (%)							
	рН _f	pH _{fox}	Change	ΤΑΑ	ТРА	TSA	S _{KCL}	Sp	S _{POS}	S _{nas}					
MW01/4.0-4.1	8.82	5.72	3.1	<5	<5	<5	0.007	0.04	0.04	-					
MW02/3.0-3.1	8.48	8.37	0.11	<5	<5	<5	<0.005	0.007	0.006	-					
Guidelines	<4*	<3.5**	S-1* *	18#	18#	18#	_	_	0.03#	-					
Caldonneo	- 7	-0.0	- '	36##	36##	36##			0.06##						

Table 16: Results of ASS Laboratory Analysis

Notes:

TAA Total Actual Acidity

TPA Total Potential Acidity

TSA Total Sulphidic Acidity (TPA-TAA)

S_{KCI} KCI extractable sulphur

S_P peroxide oxidation sulphur

S_{POS} Peroxide oxidisable sulphur

 $S_{nas} \quad \text{Net acid soluble sulphur} \\$

+ provides brief description only, full material description given in Test Bore Reports, Appendix B

* for Actual Acid Sulphate Soil

** Indicative value only, for Potential Acid Sulphate Soil

ASSMAC Action Criteria for disturbance of 1 – 1000 tonnes of coarse textured material i.e. sands to loamy sands

ASSMAC Action Criteria for disturbance of 1 – 1000 tonnes of medium textured material i.e. sandy loams to light clay

^ pH_f non-oxidised pH

pH_{fox} oxidised pH

Change pH_{fox} – pH_f

Based on the analytical results of the acid sulphate soil tests, the following observations were made:

- Based on site observations, screening test results and taking into account the various fill/soil horizons encountered, samples MW01/4.0-4.1 and MW02/3.0-3.1 were selected and submitted for SPOCAS testing;
- S_{POS} levels (sulphur trail) were only slightly above the action criteria of 0.03% for MW01/4.0-4.1;
- The acid trail in both samples were below the TPA and TSA action criteria of 18 mol H+/tonne, indicating the unlikely presence of ASS and acidic components in soil.

It is considered that the likelihood of the presence of ASS and acidic components in soil across the site is low.

12.4 Salinity and Aggressivity

The test results applicable to the assessment of soil salinity and aggressivity are presented on Table 15, Section 11.5.

The test results indicate the following soil characteristics:

- The site soils (fill and natural) most likely to be disturbed through future development (i.e. upper 2 m) were found to be generally non saline, with only a small number of samples indicating slight to moderate salinity;
- The soils within the same depth range were found to be non sodic; and
- The soils within the same depth range were found to be non aggressive to both steel and concrete.

One low soil pH was found at BH8/2.0-2.1 m, suggesting mild aggressivity towards concrete.

Based on the site observations and analytical results, it is considered that there are not likely to be any significant issues with the proposed development as a result of soil salinity or aggressivity. However, it is important to utilised good soil management and construction practices to minimise the potential for mobilising saline soils (where they may exist) and mitigating any impacts potentially undetected saline or aggressive soils may have on the proposed development. Such measure may include:

- Avoiding work that results in water collecting in low lying areas, depressions, or behind fill embankments or near trenches. This can lead to water logging of the soils, evaporative concentration of salts, and eventual breakdown in soil structure resulting in accelerated erosion;
- Retain or use native vegetation in landscaping areas, as such species are likely to be more adapted to the local environment;
- Any pavements should be designed to be well drained of surface water. There should not be
 excessive concentrations of runoff or ponding that would lead to water-logging of the pavement or
 additional recharge to the groundwater through any more permeable zones in the underlying
 filling material;
- Surface drains should generally be provided along the top of batter slopes to reduce the potential for concentrated flows of water down slopes possibly causing scour;
- Ensure that the damp proof membrane, where used, is constructed in accordance with the Building Code of Australia and does not permit any bridging between bricks below and above the membrane;
- Use a minimum 50 mm bedding sand layer beneath any ground bearing concrete floor slabs; and
- Ensure that all concrete structures are designed appropriately in accordance with Australian Standard AS2159 (2009) for mildly aggressive conditions.

13. Conclusion and Recommendations

This Phase 1 and 2 contamination investigation indicates that there is generally a low risk of soil or groundwater contamination within the site. As such, the site is considered, from a contamination perspective, to be generally suitable for the proposed development. The investigation also indicates that there are not likely to be any significant impacts to the development as a result of acid sulphate soils, soil salinity or aggressivity.

The following recommendations are provided in terms of further site investigations and management:

- It appears that there may be some asbestos on the site due to a former asbestos cement pipe/conduit located in the north western corner of the site, or asbestos in the filling (MW01 and BH107). In the event that this section is to be excavated during construction works, any asbestos cement materials should be removed by a suitably qualified and AS A licenced contractor. Given the detection of trace respirable fibres, air monitoring will be required as part of the works;
- Should any asbestos fragments be detected during future civil works, this area should be demarcated and the AS A licensed contractor engaged to removed the identified impact;
- Any soils requiring removal from the site must initially be classified in accordance with the NSW waste classification guidelines;
- Due to the limited access beneath the building at 333 Church Street, DP recommends that once the concrete slabs associated with the building have been removed, additional sampling in this area is conducted to ensure a complete sampling density in line with OEH NSW requirements.

14. Limitations

Douglas Partners (DP) has prepared this report for a Phase 1 and 2 contamination assessment at 12 – 14 Phillip Street and 333 Church Street, Parramatta, NSW in accordance with DP's proposal dated 6 September 2011 and acceptance received from Ms Lucinda Mander-Jones of Parramatta City Council on 16 September 2011. The report is provided for the exclusive use of Parramatta City Council for this project only and for the purpose(s) described in the report. It should not be used for other projects or by a third party. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions only at the specific sampling or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of anthropogenic influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be limited by undetected variations in ground conditions between sampling locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached notes and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations

or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion given in this report.

Douglas Partners Pty Ltd

Appendix A

Site Layout Plan

and Notes About this Report

Noualas Partners	CLIENT:	Parramatta Coun	cil		TITLE:	Phase 1 & 2 Contamination Assessment	PROJECT No:	72628.00
	OFFICE:	OFFICE: Sydney DRAWN BY: PG Bore Location Plan		Bore Location Plan	DRAWING No:	1		
	SCALE:	NTS	DATE:	Oct 2011		12-14 Phillip Street & 333 Church Street, Parramatta	REVISION:	0

LEGEND

soil bore

 \bigcirc

groundwater monitoring well

unable to be sampled

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Groundwater Bore Search

1

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, September 20, 2011

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW108611

Works Details (top)

GROUNDWATER NUMBER	GW108611
LIC-NUM	10WA108668
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	Down Hole Hammer
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2005-04-20
FINAL-DEPTH (metres)	60.50
DRILLED-DEPTH (metres)	60.50
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	ROMAN CATHOLIC CHURCH
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	6.20
SALINITY	5300.00
YIELD	5.50

Site Details (top)

REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	212 - HAWKESBURY RIVER
AREA-DISTRICT	
CMA-MAP	9130-3N
GRID-ZONE	56/1
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6257213.00
EASTING	315129.00
LATITUDE	33 48' 33"
LONGITUDE	151 0' 10"
GS-MAP	

e

AMG-ZONE56COORD-SOURCEGIS - Geographic Information SystemREMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	FIELD OF MARS
PORTION-LOT-DP	1//1034092

Licensed (top)

COUNTYCUMBERLANDPARISHFIELD OF MARSPORTION-LOT-DP1 1034092

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	11.50	206			Down Hole Hammer
1		Hole	Hole	11.50	60.50	165			Down Hole Hammer
1	1	Casing	Steel	-0.50	11.50	168	158.4		Welded; Driven into Hole; Open End
1	1	Casing	PVC Class 9	-0.50	29.50	140			Screwed and Glued; Suspended in Clamps
1		Annulus	Concrete	-0.10	11.50	206			

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION	SALINITY
46.10	46.30	0.20				5.00			4650.00
56.50	56.60	0.10		6.20		0.20			5300.00

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	1.00	1.00	Fill	
1.00	3.00	2.00	Clay, brown	
3.00	5.50	2.50	Shale	

\$

5.50	7.00	1.50	Sandstone, with Shale bedding
7.00	22.00	15.00	Sandstone, grey
22.00	23.30	1.30	Sandstone, soft
23.30	46.10	22.80	Sandstone, grey
46.10	46.30	0.20	Sandstone, fractured
46.30	47.50	1.20	Sandstone, grey
47.50	47.70	0.20	Sandstone, fractured
47.70	56.50	8.80	Sandstone, grey
56.50	56.60	0.10	Sandstone, fractured
56.60	60.50	3.90	Sandstone, grey

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

\$

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, September 20, 2011

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW110914

Works Details (top)

GROUNDWATER NUM	IBER GW110914
LIC-NUM	10BL603583
AUTHORISED-PURPO	SES MONITORING BORE
INTENDED-PURPOSE	S MONITORING BORE
WORK-TYPE	Well
WORK-STATUS	
CONSTRUCTION-MET	HOD Auger - Solid Flight
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2010-01-20
FINAL-DEPTH (metres) 6.00
DRILLED-DEPTH (met	res) 6.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	AVIS RENT A CAR SYSTEM PTY LTD
GWMA	-
GW-ZONE	-
STANDING-WATER-LE	VEL 5.00
SALINITY	
YIELD	
Site Details (top)	
REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6257260.00
EASTING	315973.00
LATITUDE	33 48' 32"
LONGITUDE	151 0' 43"
GS-MAP	

,

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	FIELD OF MARS
PORTION-LOT-DP	1//509643

Licensed (top)

COUNTYCUMBERLANDPARISHFIELD OF MARSPORTION-LOT-DP1 509643

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	6.00	125			Auger - Solid Flight
1	1	Opening	Screen	2.50	6.00	50			PVC Class 18; A: 1mm; Screwed
1		Annulus	Waterworn/Rounded	0.00	0.00				Graded; GS: 2- 3mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION	SALINITY
5.00	6.00	1.00		5.00				0.25	

Drillers Log (top)

FI	ROM	то	THICKNESS	DESC	GEO-MATERIAL	COMMENT
0.	00	0.20	0.20	FILL, SILTY SAND BROWN		
0.	20	0.40	0.20	FILL, SANDY CLAY RED GREY		
0.	40	1.10	0.70	FILL SANDY CLAY RED		
1.	10	2.50	1.40	CLAY SANDY RED		
2.	50	3.20	0.70	CLAY RED		
3.	20	5.00	1.80	SILTSTONE, SHALE FRAGMENTS		

٠

5.00	5.50 0.50	CLAY SANDY BROWN
5.50	6.00 0.50	SANDSTONE BROWN LOW STRENGTH

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, September 20, 2011

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW110913

Works Details (top)

GROUNDWATER NUMB	ER GW110913
LIC-NUM	10BL603583
AUTHORISED-PURPOSE	ES MONITORING BORE
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Well
WORK-STATUS	
CONSTRUCTION-METHO	DD Auger - Solid Flight
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2010-01-20
FINAL-DEPTH (metres)	10.00
DRILLED-DEPTH (metres	s)
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	AVIS RENT A CAR SYSTEM PTY LTD
GWMA	-
GW-ZONE	-
STANDING-WATER-LEV	EL 7.00
SALINITY	
YIELD	
Site Details (top)	
REGION 10) - SYDNEY SOUTH COAST
RIVER-BASIN	
AREA-DISTRICT	
СМА-МАР	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING 62	257267.00
EASTING 31	5992.00
LATITUDE 33	3 48' 32"
LONGITUDE 15	51 0' 43"
GS-MAP	

.

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	FIELD OF MARS
PORTION-LOT-DP	1//509643

Licensed (top)

COUNTYCUMBERLANDPARISHFIELD OF MARSPORTION-LOT-DP1 509643

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	10.00	125			Auger - Solid Flight
1	1	Opening	Screen	6.00	10.00	50			PVC Class 18; A: 1mm; Screwed
1		Annulus	Waterworn/Rounded	0.00	0.00				GS: 2- 3mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION	SALINITY
7.00	10.00	3.00		7.00					

Drillers Log (top)

FR	MO	то	THICKNESS	DESC	GEO-MATERIAL	COMMENT
0.0	0	0.10	0.10	CONCRETE		
0.1	0	0.20	0.10	CLAY SILTY RED BROWN		
0.2	20	1.20	1.00	CLAY SANDY RED BROWN		
1.2	20	2.00	0.80	CLAY SANDY RED		
2.0	0	3.50	1.50	CLAY SANDY BROWN		
3.5	50	4.50	1.00	CLAY SANDY BROWN/SHALE		

4.50	4.90	0.40	SANDSTONE BROWN LOW STRENGTH
4.90	6.00	1.10	CLAY SANDY BROWN SHALE FRAGMENTS
6.00	6.20	0.20	SANDSTONE WEATHERED GREY WHITE
6.20	10.00	3.80	SANDSTONE WHITE

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, September 20, 2011

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW110912

Works Details (top)

GROUNDWATER NUMBER	GW110912
LIC-NUM	10BL603583
AUTHORISED-PURPOSES	MONITORING BORE
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Well
WORK-STATUS	
CONSTRUCTION-METHOD	Auger - Solid Flight
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2010-01-20
FINAL-DEPTH (metres)	10.00
DRILLED-DEPTH (metres)	10.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	AVIS RENT A CAR SYSTEM PTY LTD
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	7.00
SALINITY	
YIELD	
Site Details (top)	
REGION 10-3	SYDNEY SOUTH COAST
RIVER-BASIN	
AREA-DISTRICT	
GRID-ZUNE	
SCALE	
ELEVATION-SOURCE	
NORTHING 6257	285.00
EASTING 3159	97.00
LATITUDE 33.48	3' 31"
LONGITUDE 151 ()' 44"
GS-MAP	

÷

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	FIELD OF MARS
PORTION-LOT-DP	1//509643

Licensed (top)

COUNTY	CUMBERLAND
PARISH	FIELD OF MARS
PORTION-LOT-DP	1 509643

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	10.00	125			Auger - Solid Flight
1	1	Opening	Screen	3.00	10.00	50			PVC Class 18; A: 1mm; Screwed
1		Annulus	Waterworn/Rounded	0.00	0.00				Graded; GS: 2- 3mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION	SALINITY
7.00	10.00	3.00		7.00				0.25	

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO- MATERIAL	COMMENT
0.00	0.10	0.10	CONCRETE		
0.10	0.50	0.40	FILL,SILTY CLAY, GRAVEL		
0.50	(1.80	1.30	CLAY SANDY GREY RED		
1.80	2.50	0.70	CLAY SANDY GREY BROWN		
2.50	3.00	0.50	CLAY SANDY GREY		

٦

3.00	3.50	0.50	CLAY SANDY SOME SHALE FRAGMENTS
3.50	4.30	0.80	SHALE CLAY BROWN
4.30	5.00	0.70	SHALE LOW STRENGTH,IRONSTONE,SANDSTONE
5.00	5.20	0.20	SHALE LOW STRENGTH DARK GREY
5.20	6.50	1.30	SHALE LOW STRENGTH BROWN SANDSTONE BANDS
6.50	6.80	0.30	SANDSTONE LOW STRENGTH WHITE
6.80	10.00	3.20	SANDSTONE MEDIUM STRENGTH WHITE

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, September 20, 2011

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW024667

Works Details (top)

GROUNDWATER NUMBER	GW024667
LIC-NUM	10WA108142
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	GENERAL USE
WORK-TYPE	Well
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	Hand Dug
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1966-10-01
FINAL-DEPTH (metres)	4.50
DRILLED-DEPTH (metres)	4.60
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	603 - SYDNEY BASIN
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	213 - SYDNEY COAST - GEORGES RIVER
AREA-DISTRICT	
CMA-MAP	9130-3N
GRID-ZONE	56/1
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	(Unknown)
NORTHING	6256207.00
EASTING	316368.00
LATITUDE	33 49' 6"
LONGITUDE	151 0' 57"
GS-MAP	0055A4

AMG-ZONE 56 COORD-SOURCE GD.,PR. MAP REMARK

Form-A (top)

COUNTYCUMBERLANDPARISHST JOHNPORTION-LOT-DP99999

Licensed (top)

COUNTYCUMBERLANDPARISHST JOHNPORTION-LOT-DPN/A

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	1	Casing	Concrete Cylnder	-0.60	-0.60	914			(Unknown)

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO- DEPTH (metres)	THICKNESS (metres)	ROCK-CAT- DESC	S- W-L	D- D- ר L	YIELD	TEST- HOLE- DEPTH (metres)	DURATION	SALINITY
2.40	2.40	0.00	Unconsolidated	2.40					Fresh

Drillers Log (top)

FROM TO THICKNESS DESC GEO-MATERIAL COMMENT

0.00 4.57 4.57 Sand Water Supply

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

5° 2. "

12-14 Phillip St & 333 Church St, Parramatta

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au

Symbol	Layer	Cu
0	Cities and large towns renderImage: Cannot build image from features	
Cowra O	Populated places renderImage: Cannot build image from features	
0	Towns	
•	Groundwater Bores	
	Catchment Management Authority boundaries	
AZ	Major rivers	

Topographic base map

Appendix C

Aerial Photographs

	CLIENT: Parramatta City Council			TITLE:	1943 Aerial Photograph	
Douglas Partners Geotechnics · Environment · Groundwater	DRAWN BY: KS SCALE: As shown		OFFICE: Sydney		Phase 1 & 2 Contamination Ass	
	APPROVED BY		DATE: 26.09.2011		12-14 Phillip and 333 Church Str	

North

	CLIENT: Parramatta City Cour	ncil		TITLE:	1961 Aerial Photograph	Project No:	72628.00
Douglas Partners Geotechnics · Environment · Groundwater	DRAWN BY: KS	SCALE: As shown	OFFICE: Sydney		Phase 1 & 2 Contamination Assessment	Photo No:	2
	APPROVED BY		DATE: 28.09.2011		12-14 Phillip & 333 Church Streets, Parramatta	Revision:	

	CLIENT: Parramatta City Coun	cil		TITLE:	1970 Aerial Photograph
Douglas Partners Geotechnics • Environment • Groundwater	DRAWN BY: KS	SCALE: As shown	OFFICE: Sydney		Phase 1 & 2 Contamination Ass
	APPROVED BY		DATE: 28.09.2011		12-14 Phillip & 333 Church Stree

Project No:72628.00SessmentPhoto No:3ets, ParramattaRevision:

	CLIENT: Parramatta City Cour	ncil		TITLE:	1982 Aerial Photograph
Douglas Partners Geotechnics · Environment · Groundwater	DRAWN BY: KS	SCALE: As shown	OFFICE: Sydney		Phase 1 & 2 Contamination Ass
	APPROVED BY		DATE: 26.09.2011		12-14 Phillip & 333 Church Stree

	CLIENT: Parramatta City Coun	cil		TITLE:	2002 Aerial Photograph
Douglas Partners Geotechnics · Environment · Groundwater	DRAWN BY: KS	SCALE: As shown	OFFICE: Sydney		Phase 1 & 2 Contamination Asso
	APPROVED BY		DATE: 26.09.2011		12-14 Phillip & 333 Church Stree

	CLIENT: Parramatta City Cou	ncil		TITLE:	2011 Aerial Photograph	Project No:	72628.00
Douglas Partners Geotechnics · Environment · Groundwater	DRAWN BY: KS	SCALE: As shown	OFFICE: Sydney		Phase 1 & 2 Contamination Assessment	Photo No:	6
	APPROVED BY		DATE: 26.09.2011		12-14 Phillip & 333 Church Streets, Parramatta	Revision:	

Appendix D

Historical Title Deeds

Service First Registration Pty Ltd

Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

Summary of Owners Report

<u>LPMA</u>

Sydney

Re: - 333 Church Street, Parramatta

Description: - Lot 3 D.P. 825045

Data of A successful and a	Desister 1 Descriptor (2) 8 Occurrenting 1	
Date of Acquisition and	wegistered Proprietor(s) & Occupations where	Reference to Title at Acquisition and sale
<u>terni nelu</u>		-
(10.10.1925)	Anna Louisa Smith (Widow)	Book 1323 No. 440
(1925 to 1925)		
11.12.1923 (1923 to 1936 - as regards that		Now
part marked (A) on the		(A) on the attached copy of D.P. 825045)
attached copy of D.P. 825045)	Claude Breasley (Real Estate Agent)	And
part marked (B) on the		Vol 4784 Fol 48 (as regards that part marked
attached copy of D.P. 825045)		(B) on the attached copy of D.P. 825045)
06.03.1936		Vol 4514 Fol 105
(1950 to 1960 as regards that	Frank Edward Maling (Merchant)	Now
attached copy of D.P. 825045)		Vol 4784 Fol 38
30.03.1937		
(1937 to 1938 - as regards that	Sidney Joseph Adams (Gentleman)	Vol 4784 Fol 48
part marked (B) on the		
attached copy of D.P. 825045)		
(1938 to 1960 - as regards that)		
part marked (B) on the	Frank Edward Maling (Merchant)	Vol 4784 Fol 48
attached copy of D.P. 825045)		
28.10.1960		Vol 4784 Fol's 38 & 48
(1960 to 1988 – As regards the	Parramatta Arcade Pty Limited	Now
whole of the subject land)		Vol 10417 Fol's 86 & 87
29.09.1988		Vol 10417 Fol's 86 & 87
(1988 to 1992)	Interior No. 2 Pty Limited	Now B/222262 & C/222262
	# Leo Papadolias	
15.05.1992	# Anna Papadolias	B/333263 & C/333263
(1992 to date)	# Stavros Skarmoutzos	Now
	# Avgi Skarmoutzos	3/825045

Denotes current Registered Proprietors

Yours Sincerely Mark Groll 30 September 2011 (Ph: 0412 199 304)

A

Reg Ċ.A Rel PARRAMATTA RIVER Los PLA 10 È. 20. 200 of orest 5 CUTTER 0.25 WIDE 42 20 A D.R. 3332563 CUTTER 0.27 UIDE 257 =1 55 Longi Tot got CUTTER 0.34 UIDE WAS CLEAR Mun. Ci (A) (a) 22.163 30 Loci (A) EASEMENT - C415677 TWO STOREY BRICK COMMERCIAL BUILDING NO.377 ŝ, Poris (B) BENEFITED BY EASEMENT STREE1 - C418127 Cau Ŋ,) 593.7 This Jun and and 203 · 07 'so" 271" 29" 20.345 WALL DITS CLEAR U RH.DHAW FD. 286"53"-7.785 BY ME (DP.791693) ar.M 15.535 a surv arrand pinn.... is accu. Provetic the De the 2 CLES D. D. Pien D.1 RM.NAIL & FD. 269'00'-3.62 (DP.791693) PANE dedic reser positi сни_{всн} ė S Strain S PHILLIP STREET WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION This negative is a photograph made as a permanent

record of a document in the custody of the

Registrar General this day. 10th September 1992

O

.

Plan Drawing only to appear in this space

.

791693

a, \cap ··---

DIAGRAM &

Ť.

3 287 01'50'

0. P. 79693

580+ 51'

15. 534

10 20 30 40 50 60 70 Table of mm 110 120 130 140

\$~9

PLAN FORM 2

SIGNATURE AND SEALS ONLY.

111 24/100 * S. States,

1. The Parme sig

ANDRE AT SYDNEY THES OT AL WHOR (LIGLAT 1092 MICHAE AUSTRALIA BASK LEAT TORNEY IN ITORIES SHATPE TORNEY IN ITORIES THAT FOR ANDREY IN STATUS ANDREY IN STATUS ANDREY IN STATUS ANDREY IN STATUS ANDREY IN STATUS

vituros CoraldineLicoraldo

General and an and a second se

Gans Officers

Crown Lands Office Approva

Amboeiced Officer

Council Clark's Cartificate

Council Clark's Cartificate
I hereby certify that -Is is the experiments of the local Bowminent Act, 1919 Isster then
the requirements of the local Bowminent Act, 1919 Isster then
the requirements for the registriction of philad, and
the registriction of the local Bowminent Act, 1919 Isster then
the requirements of the Isster and the registriction of the Isster and
the registriction of the Isster and the Isster and the Isster
Uncer, Council, and Local Distriction of the Isster and the Isster and
the register and the Isster and Isster and the Isster and Isster and the Isster and Isster

SURVEYOR'S REFERENCE: 4673 CHECKUST

.

....poges..

AN APPROVED

Lond District Paper Ha Field Book ...

.

¥ /Seq:1 /Pgs:ALL 08:14 2011 /Prt:19-Sep Ň ¥. /Sts: /Rev:13-Jan-1993 д 0825045 Req:R776125 /Doc:DP Ref:df /Src:M

۳ł

OFFICE USE ONLY	- ····
DP 825045	4
istared: 🐠 🖗 אריים דייים וואיזיים	A
32/5671 OF 20/8/1992	- -
System: TORRENS	īC
ONE CONSOLIDATION	2
Map: UOO 52-411 ^件	T
Plun: DP333263	
N OF CONSOLIDATION OF OTS B¢C IN D.P. 333263	
the are in matres. Reduction Ratio 1:250	
HENREAMATTA	
Iny: PARRAMATTA	
r≖ ST. JOHN	
WY: CUMBERLAND	
la sitett tol-my plan in slicets. (Delate if inapplication	
AICHAEL J. BURG	
(). FORMERED Under the Surveyors Act, 1929, as	
urses and has been medels accordance with the Survey to Republic soft and any special republic ments of operiment of Lands, and was completed on BOTH_UUX_IPP2	
ung 2017 000 Surveyer Act. 1329, as annonded. ver an pisar a der Surveyer Act. 1329, as annonded. um this statement. sant dare et aurory. X-Y	
s used in preparation of survey(complication .P. 791693 D.P. 87494 541902 ১৯৪৫-৫৬ ৪৪794	
EL FOR USE ONLY for statements of intention to stepublic roads, lo create public reaerves, dralmage ves, assements, restrictions on the use of lend or ve covenants.	
	ļ
	1
PLAN AMER CENTRE LTO AT SURVEYON & REQUEST	

Req:R777146 /Doc:CT 10417-086 CT /Rev:23-Dec-2010 /Sts:OK.OK /Prt:19-Sep-2011 10:08 /Pgs:ALL /Seq:1 of 4 Ref:df /Src:T 10417096 RTIFICATE OF TITLE NEW SOUTH WALES OPERTY ACT, 1900, as amended. 86 10417Application No. 25815 LC. Vol Prior Title Vol. 4784 Fol. 38 Edition issued 14-10-1966 á K424911 ĉ I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 040 Witness S. Vandine Registrar General. PLAN SHOWING LOCATION OF LAND SEE AUTO FOLIO (IOR. (Page) 7%p B L, PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON OCUMENT MUST NOT BE REMOVED FROM С DIAGRAM. -NOT TO SCALE. B (5% in) 60 C Scale: 30 feet to one inch. K 424911. DE Ú ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot B in plan lodged with Transfer No. C418127 (now filed as P.P. 333263) in City of Parramatta, Parish of St. John and County of Cumberland being part of Allotment 1A Section 24 granted to John Byrnes on 20-5-1840. atas Registrar General. FIRST SCHEDULE (Continued overleaf) レージョン THE -PARRAMATTA ARGADE PTY HIELES OFFICE Registrar General. SECOND SCHEDULE (Continued overleaf) Reservations and conditions, if any, contained in the Crown Grant above referred to. Easement created by Transfer No. C415677 affecting the part of the land above described designated (X) in the plan hereon. System of Party affecting the part of the land above described designated (X) EĄ Easement created by Transfer No. C418127/appurtement to the land above described affecting the piece of land 2 fagt 6 inches wide within Lot A shown in the plan hereon. We described allocting the place -Lease No. J86608 of the shop situated on part of the ground floor and basement of premises known as Nos. 333-337 (inclusive) Church Street, Willramatta together with rights to Sydney Wide Trading & FA = Expired 10 - 4 - 1968 Finance Pty. Limited with consent of Mortgagee. Entered 27-1-1965. Registrar General. NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

		FIRST SCHEDULE (continued)					A X X X X X X X X X X X X X X X X X X X	200.001
						-		K331845 7
		NEGIS (ERCEU PROPRIETOR	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signature of Registrar-General	
Interior No	. 2 Pty. Limited by Tran	sfer X840053. Registered 29-9-1988				,	Ø	K41880 A-2
	-							2-2-1
	***************************************							έλι [J/3
								× • • • • • • • • • • • • • •
								247 623-001.J
							649474.49	
	والمراجع							Carter La
			•					
					-			
			•					فر ما ال ا
	-	SECOND SCHEDULE (continued)						•
NATURE	INSTRUMENT	PARTICULARS	ENTERED R	Signeure of sgisters-General		CANCELLATION		
Jahor -	12:225 H 2:241	3/ point if des derivered and promotes flere of the Porticiting						1. S. S.
1		- Amperior 20 333- 237 Alamah Jahat to Perior at a Coldan -]				;	11. 5.120
		21-21 - 3lt to Brield Right Ernett of the Wildell						WH KNOW
		Alenging Resider 2	P Jeran		گديد. حكم	1-6-8-11	Junter	3
XXXX		tof Some 1, 5, 3 wat in an ille fint Stand if the finiter ?	•		1			WERE SHICZER
		Knowner 337 - 37 7 Johnsol Sharl & Gall Stratter Mar will	an a					12406 196
		Tryles, to M. C. Hard Rivery Chale Still. V	Sec. 20	Can	muse	1-1-1010	- internet	Nessas Lae
TTO TO		1 al a state wet a so to be of the growt fless and free for the former of the former o			-			(Princes)
		2 are becaused of the work Browson bounded 3.2 b 2.2 b 2.2 b and the second secon						D9402301
		-1 -1 $+$ $0+$ $0-1$			- Epice d		Jenner	C
60.0	P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Autor in the second of the second second second						Bear lock
	Y	A the first free to be and the set of the set of						the sice
		Start Provident Land is with t Voli			-			# % OCC
		Chine for at Backback Shakeans	4-10101-14-			N 475545	- martin	
Leve	+ + 108611 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Attestion i a sut attear attestion i start attestion i start attestion atte						
		a a a a a a a a a a a a a a a a a a a		-				
		Lunes h. n. n. h. n. h. P. f. w. / L. M. W. C. L. K.	1	- marine	1. 1.5	- 91 1 10 - 10 - 11	(•
				-				

τ.

f:df		Src: (I	r Page	:cr 3 of	104 4 p	17-) 🤇	CT IN IS	Re		D JOELS VAT			o Helay Eb	st VIDE	0, 28/4 79 Pm	K. Change	K Magne los		Yrt V	01	-se	2 0	201 (//: 	7	.0 : 0 <i>F</i>	08 <u>0</u> [/Pc / {	56		· /:	Seq:	
an a			James /						Junear			Junitar					A demonstration							and a second					×			6	9
renative the bary in a small set of the	CANCELLATION		31-7-1974			27-6-1974			23-7-1975	· · · · · · · · · · · · · · · · · · ·		F270397					19-10-197							0291-C-66			:		21-10-1983			28-5-1985	•
a ferrar provincial de la constante de la const			Expired			Expired			Exnî red			Surrendered					Expired							Fahred	· · · /				-Expired			Expired	
alan ni kumul ni ulangan ni Sistangkina as	Registrar General		Juden			Juntan			Justan			Jonaca					forman							Junear					de mar			T T	
and the second sec	ENTERED		3951-1			1651-8-11						-#26-2-1	-		-		<u>- 31 7 - 1974</u> -		-	· · · · · · · · · · · · · · · · · · ·	·			-23-7-1975-					-12-10-1977				
		a loven and to but floor at the building	to Part Sunday of Standing Plantaged	A prevention dealing had not a an advant to	presentation of the percent of the 19 19 19 19 19 19 19	Cabo and Car Stricted	Hereins was tor of the manual two with a way of the	There are the the second of the second se	and The Pullin his is in the second adverter of the production of the second	<u>of bhop premises forming part of premises known as 333-337</u>	Ohurch Street, Parramatta, together with rights to Netl's	Catering Co. Pty. Limited	<u>of the shop premises heing part of the ground floor and</u>	beacement of the puilding known as 777 to 777 Claurah Street	Rerramativa as shown in planghmered to lease No. 1406199	to Harren Leslie Foulton of Glenheven, Company Director	and June Poutbon his wife.	-of-shop-premises-forming-part.of-the-building-known-as	533 to 337 (inclusive) Church-Street,-Parramatta, being-	-the-shop-forming-part-of-the-ground-floor and-portion of-	the-basement and also Shop-No. 2 together with the	basement thereto all show the ansamered to Lease	No. 1410984 (togethen with rights) to Agostino Bros. Pty.	-Jimit tod	of the shap premiars boing part of the ground floor and	bencment of the building known as 733 to 337 Church Street	Permematta as shown in plan annexed to hease No. Id06199	together with rights to Epopers World Pty. Isnited. Date	ef expiry 23-6-1980.	arts of af president being the beaudinacted hosement of the building known as	233-3371 Cheer Street Boromatic being Shine 2 hannag Ebor on deriched in	<u>Leaves HH10964 and M36 3843 AD Accinct 255 94 in they to determine</u>	
INSTRUMENT	NATURE NUMBER DATE	Lane work 8 - 4 - 1919		Lea m363863 19-5-1971			100 h 10 4 10 0 4 1 5 4 71			Lease 1974-			Leese 2040230 19 £ 1974					. Теане 7270398							-Ticase 0783.479					tease econum			

	SECOND SCHEDULE (continued)			-	
	ATTICULARS ENTERED	Signature of Registrar General		CANCELLATION	
r Terrete	by -Partinge-BrosPtyLimitedRegistered-25-9-1981.		Тарвед	T293522	Sec.
. Parremetta in plan ann	exed hereto/together with the rights of access and services and				
referred to in Clauge	2 of Schedule 1 with option of renewal expires on 31-6-1983.		The second se		
19-1-1983 (127)		Construction of the second sec	Expired	28-5-1985	
Lease to Shoppers Nor-	1d Pty Limited of premises being Shop part of the ground floor and besement				
of the building known.	as 333–337 Church Street, Perremette es shown in plan annexed to lease				
1406198. together with	n rights.Expires 23-6-1986, Registered 21-10-1983		Cancelled	X513251	
ollease to Apostinh Bros	. Ety. Limited of premises being the part of premises known as				
333 to 337 Church Stre	et. Parmatta being the area demised by 1,410984 and M363863.	(-	
Expires 31.8.1994. Ret	pistereli 28-5-1985.				
Lease W298332 Sub Lease	to Vition Sound Sales and Service Pty. Limited. Expires 10.2.1987 with Opti	- - 			
of Repewal of a years.	Registered 1.5.1986.	69)	Expired	Y309193	K
t tease to Survil Ptv.	limited of pycerices being Spars, and has another bolou in building to a 222				
-Church Street, Pappan	atta: doctherwith Withte Station 21 10 1001 Ottion of washed I turned				
Rechtered 10.2 1907			Surrandered	X925710	China China
5 Car and the the	our hadred Service & binited Prairie 1 200 00				
00 hear x396347	Construction Court Sale in Service R.		1140 1141	DCOTE2	
hinited Ra	ister (2 4.2. 1988 a		Cancel led	Y309194	
-613 CAVERT B7 1N	7(24 and No 2. 813. 610171 . 20122 4 2 2 298		Lit that are	Velicoreo	
1054 Mortgage to citiba	nk Savings Limited. Registered 29-9-1988			20110400	
				•	
		-			and a grant part of the second se
	SEE ANTO FOLO				
		· :			
			-		
		1	-		

. •

			:		•			Req Ref
		int. muchine (without)					•	:R7 :df
1		REGISTERED PROPRIETOR	NATURE	INSTRUMENT	DATE	ENTERED	Signature of Registrar-General	773 /s 2-6
18	Interior No. 2 Pty. Limited by	Transfer X840053. Registered 29-9-1988	:				0	
lo [:]					-			Doc:
1 L								CT 1
[F								041
0 T								.7-0
								87
•						,		
lοV				- <u></u> -			•	/Rev
		· · · · · · · · · · · · · · · · · · ·			; ·			121-V
					1			-Dec
		SECOND SCHEDULE (continued)						s-2(
	RASTRUMENT NUTBER DAYE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION		
	1990 - 1. 5. 17	16 - 16 year of her france out and growend flow of the Arcibling						/Sts:OI
		will sight to the will Built Built of the State		- Lutaine				C.SC
	Zan 1:21 995 1.3.14	Lungung 1913 and the car My fresh March Michaelder	4061.01.12)	Equived	761-2-11		PH
2		How and and South Strack Commentary and a for the	26-10-22	Jantan .	Capitas	7- 7.1969.	June	
Ę	144555 14455 1455 1455 1455 1455 1455 1	13th of the shop situated and side of the grand fleer and prate of the second second fleer and in the second s						0.175222 A
		Bried Pried Parson atta (taylor - the right) to 7 mg			- And Angle of the state of the			
(2935	10.5.01 1 20101 05 21 2.001	a leve with sail of the second land	10 - 4 - 19 bB	Jun Con	Explored	<u>30 a. 1915</u>	ferrand	Nor you see cert :
٩Ž١		<u> </u>						U guitto Lee)
ozə		Dert Para atta Charter bit right he Vatrie 12	30 1 101 G	faurien	1.1.2	41475545	(when	Ed //
969)		المراجع المراجع من المراجع المر من المراجع المر						ALL 7
والمتحدثة والمساد		rections, determined from the content of the second and the from the for the determined of the determi	2.6.09.	fuilder	Crephied	27. b. 1974	Journal	/Seg:
		TEE ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE	REGISTRAR-G	NERAL ARE CA	NCELLED			2 of
			ロート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CONTRACTOR CONTRACTOR OF THE CONTRACTOR		そうとう いってい かんがんかい ちゅうどう	4. シートをおける時間の時間の時間に

	(Page ³ of 4- pa	ges) (Ki))	forthe of the strengthe		And the state	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1041		<u> </u>	<u> </u>		

CANCELLATION	31-7-1974	27-6-1974	52-7-1975	LGEOLZA		19-10-1977			0861-6-60		21-10-1983	
	Bkpired	Bxpired	Expired	Surrendered	er - tradi, t - t - tradi te es	Expîred			Extined		-Expired	
Signature of Registrar General	June -	Judden	Junter	and the second		James '			Junder		(e	
ENTERED	<u>7-7.00</u>	1147-3-11		-1-1-1974	1	- 7- 1974 -			23-7-1975		<u>7791-01-01</u>	
PARTICULARS	of room 13, and 4 which that I hulding the source to 32 Clind that Paramata (Butto All will to Build will of Clatacal Butto All and to Bar No 2 an aboun an	contraine de decomment segretes, to Neila - contensing contrained book and book and the at private head and manana the first menoral of the	with right to targe testic builder of lagueophy with any Weller and Judy Pauller, W. W. K. C	unwour overet, rarvaueves, roserner with righter for Norrise Catering Co. Phy. Limited	<u>heasmont of the building lanear an 333 to 337 Ghuroh Street.</u> <u>Farramatha as shown in Eistramered to lease No. 1406198</u> to Marren Loolis Poulton of Glanharen, Company Director	and June Poulton his wife. -of-shop-preates-forming.part-of-the-building-known-as	- <u>???-to-??f (inclusive)</u> Church-Stzeet, Parramatta, being the bacement shop forming part of the ground floor and portion of the basement wid also Shop No. 2 together with.	the basement thereto all shown in plans annexed to Lease No. 1410984 (together with mights) to Agostino Bros. Pty.	Limited af the shop premises beingigari-of the ground floot-and boomout of the building home is 222 to 227 and the	Farrangleta as shown in plan amered to Lease No. 1406398		
L DATE	8 4 90 9 1721 - 271		20-5-1974									
INSTRUMENT	BEDEM	#1: 1:5; F.W.	<u>N889505</u>	02201AX		- <u>F270398</u> -			6791479			
NATURE	Lecc		Lease						19980			

5046786	10-20		(20 200 1	N JACT	CT 16-1-95	V 588200 C	<u>3</u>		N SCEEBOC M	TTICAL M	- Seel	K395346K,	じた	ch. ποι Δλ γ	XSISACIEN		X0 1481 X1	A Star		X92 X10 1	Vana los he		1						 •			
-					*****		No. 1								D				3		ų		3			9			-			
	CANCELLATION		:			28 5 108	TODZEDO			•	;	28-5-1985	· · ·		. x513251				Y309193			X925710	X441830		Y309194	X840052						
			•			Fxntnad	Langed					Expired	· · · · · · · · · · · · · · · · · · ·		nance i led				Expired			Surrendered	Withdrawn		Cancelled	Withdrawn						
Signature of	Registrar General		· · ·			é en	A							7					6		-	69										
i entegen	CIVIENCE		1			3-2-2-16.67							Hubasement	10000				<u>-vith Option</u>		ын аs 333	t 5 years.		201-2-4-2-128					-				No. No. No.
COLLARS		a chille lunund Flore and	att leve Su 1 2 Cm 1	2-60 KA 1200 4 0 121 3663	it't' traveller will attice	1 s is an	cintered P5 8 1081 Wells	r lock un shon No. 333A (mirch	R. D. sccess and semicon-	101 Denimor on 24 6 4007			ung pont uotinthe ground flagrar	ianes phower-in plan anaxed to	part of premises known as	ed by/L410984 and M363863.		P ty. Limit ed. Empires 10.2.198		- basement below in building kn	-31-10-1991. Option-of renewa		C Veg. home led leget	a les and very ce ver		Contract 6 0 a 9 4 9 4	-1988					
PAR		appendent of the hund	the at 52 art Paris	floor on described on to	to say in Beac the	a concerced Cylinia	cince Brook Pire Limitod.	ings Bros. Pty. Limited hell	reto/together with the righ	hedule 1 with ontion of year					mited of premises being the	ramatta being the area deni	1.28-5-1985.	ion Sound Sales and Service	rod 1.5.1986. 💓	of premises-being Sherigan	gether with rights. Typire		not dales and berge	of the reason of the second	26 - 1 - 19 VV 34	and the second sec	ngs-LimitedRegistered_29_C			SEE AUTO FOUL		
			• • •				Geveet by Pen	Jage to Pan	an armexed he	Jange 2 of Sd	f				b Bros. Ptv L	a Street, Pa	<mark>네.</mark> _Registere:	Hease to Vis	ware. Registe	Pty- Limited	Parramatta, t	1.001	Kacon Ner		1000 Care		ALLIDATK SAV					
INSTRUMENT	- MURBER	CIM1850					4 +	po. T293522	Bmetts in pl	Pred to in C	9-1-1983.	C to Shome		198-toeth	te to Acostir	to-337_Churr	res-31.819	412 56032 Sub	hewal of 3.y	e to Survil	ch Street, 1	stered 18-2	mead by		concerc	Vert BY	WILL VERKEY NO					
NATURE		(22.20					1591440-Lens	-R581440 Las	Street, Parr	perking refe	Registered 1	TZBAADR L			V588200 Leas	333-	Exp1	(588200 Lease	Of Re	747024 Lea	Chu -	Reg	Areas and a		Non a la	VSHOOPI D			•			

Historical Title

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: B/333263

,

· .

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 10417 FOL 86

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
19/10/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
27/2/1992	E286383	REQUEST	EDITION 1
15/5/1992 15/5/1992 15/5/1992	E434282 E434283 E434284	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
1/6/1992	E499069	DEPARTMENTAL DEALING	EDITION 3
9/9/1992	DP825045	DEPOSITED PLAN	FOLIO CANCELLED
13/9/1999	6187444	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Historical Title

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------21/9/2011 8:41AM

FOLIO: C/333263

٠

. . .

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 10417 FOL 87

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
22/8/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
5/3/1992	E301931	DEPARTMENTAL DEALING	EDITION 1
15/5/1992 15/5/1992 15/5/1992	E434282 E434283 E434284	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
1/6/1992	E499069	DEPARTMENTAL DEALING	EDITION 3
9/9/1992	DP825045	DEPOSITED PLAN	FOLIO CANCELLED
13/9/1999	6187444	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Historical Title

LEAP Searching An Approved LPI NSW Information Broker

,

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------19/9/2011 8:15AM

FOLIO: 3/825045

. · · 2

e . . .

First Title(s): OLD SYSTEM Prior Title(s): B-C/333263

Recorded	Number	Type of Instrument		C.T. Issue	
9/9/1992	DP825045	DEPOSITED PLAN		FOLIO CREATED EDITION 1	
29/9/1992	E792435	DEPARTMENTAL DEALING	G	EDITION 2	
22/9/1993	1665560	LEASE			
22/9/1993	1665561	LEASE			
22/9/1993	1665562	LEASE		EDITION 3	
20/9/1995	0549063	LEASE			
20/9/1995	0549064	LEASE		EDITION 4	
25/6/1996	2254193	LEASE		EDITION 5	
21/11/1996	2633874	LEASE		EDITION 6	
17/10/1997	3499773	LEASE		EDITION 7	
31/3/1998	3890368	LEASE		EDITION 8	
5/7/1999	5957002	DEPARTMENTAL DEALING	G		
26/5/2000	6813460	LEASE			
26/5/2000	6813494	LEASE		EDITION 9	
27/4/2001	7565558	LEASE		EDITION 10	
6/12/2001	8180805	CAVEAT			
13/5/2002	8346809	REJECTED - LEASE			
19/8/2002	8877075	LEASE		EDITION 11	
18/10/2002 18/10/2002	9045285 9045286	TRANSFER OF LEASE VARIATION OF LEASE			
7/3/2003	9420373	LEASE		EDITION 12	
16/9/2005	AB699043	APPLICATION FOR PREI OF LAPSING NOTICE	PARATION		
			END OF	PAGE 1 ~ CONTINUED OV	ER

PRINTED ON 19/9/2011

τ,

Title Search

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 3/825045

SEARCH DATE TIME EDITION NO DATE -----_ _ _ _ ------ - - -19/9/2011 8:14 AM 18 30/8/2010

LAND - - - -LOT 3 IN DEPOSITED PLAN 825045 AT PARRAMATTA LOCAL GOVERNMENT AREA PARRAMATTA PARISH OF ST JOHN COUNTY OF CUMBERLAND TITLE DIAGRAM DP825045 FIRST SCHEDULE LEO PAPADOLIAS ANNA PAPADOLIAS AS JOINT TENANTS IN 1/2 SHARE STAVROS SKARMOUTZOS AVGI SKARMOUTZOS AS JOINT TENANTS IN 1/2 SHARE AS TENANTS IN COMMON (DD E792435) SECOND SCHEDULE (8 NOTIFICATIONS) -----RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1 EASEMENT AFFECTING THE PART OF THE LAND ABOVE 2 C415677 DESCRIBED SHOWN SO BURDENED IN THE TITLE DIAGRAM 3 EASEMENT APPURTENANT TO THE PART OF THE LAND ABOVE C418127 DESCRIBED SHOWN SO BENEFITED IN THE TITLE DIAGRAM MORTGAGE TO NATIONAL AUSTRALIA BANK LIMITED 4 E434284 5 AC212637 LEASE TO AUSBD PTY LIMITED OF REAR GROUND FLOOR, 333-337 CHURCH ST, PARRAMATTA. EXPIRES: 31/8/2010. OPTION OF RENEWAL: 5 YRS. 6 AD557279 LEASE TO MLC CONVEYANCING PTY LIMITED OF SUITE 2, LEVEL 1, 333-337 CHURCH ST, PARRAMATTA. EXPIRES: 9/8/2010. OPTION OF RENEWAL: 3 YEARS. 7 LEASE TO NILE RIVER TRADING PTY LIMITED OF SHOP 2, AE744714 333-337 CHURCH STREET, PARRAMATTA. EXPIRES: 4/2/2012. OPTION OF RENEWAL: 5 YEARS. AF723991 LEASE TO BATTLEBRIDGE PTY LIMITED OF PREMISES KNOWN 8 AS SHOP 1, 333-337 CHURCH STREET, PARRAMATTA. EXPIRES: 3/3/2015. NOTATIONS _____ UNREGISTERED DEALINGS: NIL *** END OF SEARCH ***

df

PRINTED ON 19/9/2011

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B (2) of the Real Property Act 1900.

Service First Registration Pty Ltd

Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

Summary of Owners Report

<u>LPMA</u>

Sydney

Re: - Marsden, Phillip & Church Streets, Parramatta

Description: - Lot 1 D.P. 791693

As regards that part marked (1) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
28.12.1897 (1897 to 1932)	Elsie Ellen Fleay (Spinster)	Vol 696 Fol 184
10.10.1932 (1932 to 1933)	Alexander Melville (Agent) (Transmission Application not investigated)	Vol 696 Fol 184
11.07.1933 (1933 to 1941)	Donald Fleay Melville (Farmer & Grazier) Alexander Melville (Agent)	Vol 696 Fol 184 Now Vol 4589 Fol's 237 & 250
22.07.1941 (1941 to 1941)	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier) (Transmission Application not investigated)	Vol 4589 Fol's 237 & 250
11.06.1941 (1941 to 1959)	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier)	Vol 4589 Fol's 237 & 250 Now Vol 7324 Fol's 58 & 59
09.10.1959 (1959 to 1970)	Coulan George Burnham (Company Director)	Vol 7324 Fol's 58 & 59 Now Vol 7791 Fol 62
30.06.1970 (1970 to 1973)	Burnham Brothers Pty Limited	Vol 7791 Fol 62
20.09.1973 (1973 to 1979)	M.B.C. (Parramatta) Pty Limited (Now T.S.S.S. Parramatta Pty Ltd)	Vol 7791 Fol 62 Now Vol 13103 Fol 116
13.11.1979 (1979 to 1981)	John Patrick Partridge (Real Estate Agent) Christopher Errol Underwood (Jeweller) David Garth Tetley Miles (Real Estate Agent) Gail Miles (Married Woman)	Vol 13103 Fol 116 Now Vol 14331 Fol 36
27.01.1981 (1981 to date)	# Council of the City of Parramatta	Vol 14331 Fol 36 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (2) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
28.12.1897 (1897 to 1932)	Elsie Ellen Fleay (Spinster)	Vol 696 Fol 184
10.10.1932 (1932 to 1933)	Alexander Melville (Agent) (Transmission Application not investigated)	Vol 696 Fol 184

Service First Registration Pty Ltd

Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

Search continued as regards that part marked (2) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
11.07.1933 (1933 to 1941)	Donald Fleay Melville (Farmer & Grazier) Alexander Melville (Agent)	Vol 696 Fol 184 Now Vol 4589 Fol's 237 & 250
22.07.1941 (1941 to 1941)	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier) (Transmission Application not investigated)	Vol 4589 Fol's 237 & 250
11.06.1941 (1941 to 1953)	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier)	Vol 4589 Fol's 237 & 250 Now Vol 5283 Fol's 25 & 27
07.12.1953 (1953 to 1966)	Stanley Kerkenzov (Radio Salesman)	Vol 5283 Fol's 25 & 27 Now Vol 6821 Fol 223
28.10.1966 (1966 to date)	# Council of the City of Parramatta	Vol 6821 Fol 223 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (3) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	<u>Reference to Title at Acquisition</u> and sale
28.12.1897 (1897 to 1932)	Elsie Ellen Fleay (Spinster)	Vol 696 Fol 184
10.10.1932 (1932 to 1933)	Alexander Melville (Agent) (Transmission Application not investigated)	Vol 696 Fol 184
11.07.1933 (1933 to 1941)	Donald Fleay Melville (Farmer & Grazier) Alexander Melville (Agent)	Vol 696 Fol 184 Now Vol 4589 Fol's 237 & 250
22.07.1941 (1941 to 1941)	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier) (Transmission Application not investigated)	Vol 4589 Fol's 237 & 250
11.06.1941 (1941 to 1954)	Amy Jane Melville (Widow) Donald Fleay Melville (Farmer & Grazier)	Vol 4589 Fol's 237 & 250 Now Vol 5283 Fol's 25 & 27
29.01.1954 (1954 to 1965)	Mark Foy's Limited	Vol 5283 Fol's 25 & 27 Now Vol 6951 Fol 173
07.07.1965 (1965 to date)	# Council of the City of Parramatta	Vol 6951 Fol 173 Now 1/791693

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

As regards those parts marked (4) & (5) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
21.05.1902 (1902 to 1918)	James Channon (Manufacturer)	Vol 1405 Fol 215
06.12.1918 (1918 to 1923)	Eliza Mary Haydon (Spinster) Eileen Bridget Haydon (Spinster) (Now Eileen Bridget Burton, Married Woman) Mary Theresa Haydon (Spinster)	Vol 1405 Fol 215 Now Vol 2908 Fol's 188, 189 & 190
28.02.1923 (1923 to 1924)	Lee Sing (Merchant & Married Woman)	Vol 2908 Fol's 188, 189 & 190 Now Vol 3445 Fol 183
28.01.1924 (1924 to 1935)	Alfred Bassett (Grazier)	Vol 3445 Fol 183
18.02.1935 (1935 to 1953)	John McAuslan Ritchie (Gentleman)	Vol 3445 Fol 183
07.12.1953 (1953 to 1968)	Mark Foy's Limited	Vol 3445 Fol 183
21.02.1968 (1968 to date)	# Council of the City of Parramatta	Vol 3445 Fol 183 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (6) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
21.05.1902 (1902 to 1918)	James Channon (Manufacturer)	Vol 1405 Fol 215
06.12.1918 (1918 to 1923)	Eliza Mary Haydon (Spinster) Eileen Bridget Haydon (Spinster) (Now Eileen Bridget Burton, Married Woman) Mary Theresa Haydon (Spinster)	Vol 1405 Fol 215 Now Vol 2908 Fol's 188, 189 & 190
09.08.1923 (1923 to 1924)	Lee Sing (Merchant & Married Woman)	Vol 2908 Fol's 188, 189 & 190 Now Vol 3503 Fol 47
28.01.1924 (1924 to 1935)	Alfred Bassett (Grazier)	Vol 3503 Fol 47
18.02.1935 (1935 to 1953)	John McAuslan Ritchie (Gentleman)	Vol 3503 Fol 47
07.12.1953 (1953 to 1968)	Mark Foy's Limited	Vol 3503 Fol 47
21.02.1968 (1968 to date)	# Council of the City of Parramatta	Vol 3503 Fol 47 Now 1/791693

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

As regards that part marked (7) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
21.05.1902 (1902 to 1918)	James Channon (Manufacturer)	Vol 1405 Fol 215
06.12.1918 (1918 to 1922)	Eliza Mary Haydon (Spinster) Eileen Bridget Haydon (Spinster) (Now Eileen Bridget Burton, Married Woman) Mary Theresa Haydon (Spinster)	Vol 1405 Fol 215 Now Vol 2908 Fol's 188, 189 & 190
17.11.1922 (1922 to 1935)	Stephen Arthur Ellich (Furniture Dealer) George Andrew Paul (Furniture Dealer)	Vol 2908 Fol's 188, 189 & 190 Now Vol 3426 Fol's 32 & 33
02.05.1935 (1935 to 1953)	John McAuslan Ritchie (Gentleman)	Vol 3426 Fol's 32 & 33 Now Vol 4691 Fol 211
07.12.1953 (1953 to 1967)	Mark Foy's Limited	Vol 4691 Fol 211
25.10.1967 (1967 to date)	# Council of the City of Parramatta	Vol 4691 Fol 211 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (8) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
06.01.1876 (1876 to 1921)	David Houison (& His Deceased Estate)	Devise by the Will of James Houison
17.03.1921 (1921 to 1925)	Sidney Smith (Produce Merchant)	Book 1216 No. 951
30.01.1925 (1925 to 1931)	Stephen Arthur Ellich (Furniture Dealer) George Andrew Paul (Furniture Dealer)	Book 1374 No. 42
20.07.1931 (1931 to 1951)	Sidney Smith (Produce Merchant)	Book 1629 No. 147
23.07.1951 (1951 to 1961)	Leslie Philip Henry Jeffery (Medical Practitioner) Jack Albert Houston Jeffery (Medical Practitioner)	Book 2185 No. 91
24.03.1961 (1961 to 1967)	Number 10 Phillip Street Pty Limited	Book 2566 No. 324
17.08.1967 (1967 to date)	# Council of the City of Parramatta	Book 2853 No. 38 Now 1/791693

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

As regards that part marked (9) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
17.04.1872 (1872 to 1953)	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Book 130 No. 920
30.11.1953 (Purchase) 20.12.1956 (Confirmation) (1953 to 1957)	James Sidney Greenfield (Master Butcher)	Book 2272 No. 996 (Book 2394 No. 968 – confirmation)
26.03.1957 (1957 to 1967)	Presbyterian Church (New South Wales) Property Trust	Book 2401 No. 842
31.10.1967 (1967 to date)	# Council of the City of Parramatta	Book 2864 No. 220 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (10) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
17.04.1872 (1872 to 1953)	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Book 130 No. 920
30.11.1953 (Purchase) 20.12.1956 (Confirmation) (1953 to 1957)	James Sidney Greenfield (Master Butcher)	Book 2272 No. 996 (Book 2394 No. 968 – confirmation)
26.03.1957 (1957 to 1988)	Presbyterian Church (New South Wales) Property Trust (Now Uniting Church in Australia Property Trust (N.S.W.)	Book 2401 No. 842 Now 1/771058
24.03.1988 (1988 to date)	# Council of the City of Parramatta	1/771058 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (11) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
11.03.1910 (1910 to 1925)	Richard Lambert Hamilton (Storeman)	Book 902 No. 878
05.06.1925 (1925 to 1959)	Charles Albert Harry Freestone (Manufacturer)	Book 1391 No. 502 Now Vol 6714 Fol 96
08.05.1959 (1959 to 1959)	Maggie Frances Freestone (Widow) (Section 94 Application not investigated)	Vol 6714 Fol 96 Now Vol 8055 Fol 177
29.05.1959 (1959 to 1988)	Presbyterian Church (New South Wales) Property Trust (Now Uniting Church in Australia Property Trust (N.S.W.)	Vol 8055 Fol 177 Now 1/771058
24.03.1988 (1988 to date)	# Council of the City of Parramatta	1/771058 Now 1/791693

Denotes Current Registered Proprietor

Email: grolly1@bigpond.net.au

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

As regards that part marked (12) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
11.03.1910 (1910 to 1925)	Richard Lambert Hamilton (Storeman)	Book 902 No. 878
05.06.1925 (1925 to 1959)	Charles Albert Harry Freestone (Manufacturer)	Book 1391 No. 502 Now Vol 6714 Fol 96
08.05.1959 (1959 to 1959)	Maggie Frances Freestone (Widow) (Section 94 Application not investigated)	Vol 6714 Fol 96 Now Vol 8055 Fol 177
29.05.1959 (1959 to 1967)	Presbyterian Church (New South Wales) Property Trust (Now Uniting Church in Australia Property Trust (N.S.W.)	Vol 8055 Fol 177 Now Vol 10812 Fol's 98 & 100
31.10.1967 (1967 to date)	# Council of the City of Parramatta	Vol 10812 Fol's 98 & 100 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (13) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
11.03.1910 (1910 to 1925)	Richard Lambert Hamilton (Storeman)	Book 902 No. 878
05.06.1925 (1925 to 1959)	Charles Albert Harry Freestone (Manufacturer)	Book 1391 No. 502 Now Vol 6714 Fol 96
08.05.1959 (1959 to 1959)	Maggie Frances Freestone (Widow) (Section 94 Application not investigated)	Vol 6714 Fol 96 Now Vol 8055 Fol 176
01.06.1959 (1959 to 1963)	Rumseys Seed Pty Limited	Vol 8055 Fol 176
22.10.1963 (1963 to date)	# Council of the City of Parramatta	Vol 8055 Fol 176 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (14) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
22.08.1888 (1888 to 1916)	John Booth (Freeholder)	Book 395 No. 835
16.03.1916 (1916 to 1925)	Richard Lambert Hamilton (Storeman)	Book 1078 No. 369
05.06.1925 (1925 to 1959)	Charles Albert Harry Freestone (Manufacturer)	Book 1391 No. 502 Now Vol 6714 Fol 96
08.05.1959 (1959 to 1959)	Maggie Frances Freestone (Widow) (Section 94 Application not investigated)	Vol 6714 Fol 96 Now Vol 8055 Fol 176

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

Search continued as regards that part marked (14) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
01.06.1959 (1959 to 1963)	Rumseys Seed Pty Limited	Vol 8055 Fol 176
22.10.1963 (1963 to date)	# Council of the City of Parramatta	Vol 8055 Fol 176 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (15) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.05.1872 (1872 to?)	William Byrnes (Farmer)	Book 395 No. 835
	This parcel of land subsequently formed part of the site of a Right of Way. The next event found for this parcel is the issue of Certificate of Title Volume 6714 Folio 96 dated 31.08.1953 It would appear that Charles Albert Harry Freestone (Manufacturer) may have acquired this parcel by possession	
31.08.1953 (1953 to 1959)	Charles Albert Harry Freestone (Manufacturer)	Vol 6714 Fol 96
08.05.1959 (1959 to 1959)	Maggie Frances Freestone (Widow) (Section 94 Application not investigated)	Vol 6714 Fol 96 Now Vol 8055 Fol 176
01.06.1959 (1959 to 1963)	Rumseys Seed Pty Limited	Vol 8055 Fol 176
22.10.1963 (1963 to date)	# Council of the City of Parramatta	Vol 8055 Fol 176 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (16) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
17.04.1872 (1872 to 1953)	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Book 130 No. 920
30.11.1953 (Purchase) 20.12.1956 (Confirmation) (1953 to 1957)	James Sidney Greenfield (Master Butcher)	Book 2272 No. 996 (Book 2394 No. 968 – confirmation)
Circa 1956	This parcel became a Council Public Road upon the approval of D.P. 161817 at the Title Office. Such dedication being pursuant to the Local Government Act of 1919	D.P. 161817
1956 (1956 to date)	# Council of the City of Parramatta	Public Road by D.P. 161817 Now 1/791693

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

As regards that part marked (17) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
17.04.1872 (1872 to 1953)	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Book 130 No. 920
30.11.1953 (1953 to 1956)	James Sidney Greenfield (Master Butcher)	Book 2272 No. 996
14.11.1956 (1956 to 1985)	Mun Wai Yuen (Green Grocer)	Book 2388 No. 162 Now Vol 13304 Fol 228
12.06.1985 (1985 to 1987)	Japour Pty Limited	Vol 13304 Fol 228 Now 2/739012
12.02.1987 (1987 to date)	# Council of the City of Parramatta	2/739012 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (18) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
27.07.1908 (1908 to 1918)	Isabella Rigelsford (Married Woman)	Book 861 No. 389
19.08.1918 (1918 to 1949)	Violet Pearle Couper Leabeater (Married Woman)	Book 1135 No. 37
20.07.1949 (1949 to 1968)	Rumseys Seed Pty Limited	Book 2094 No. 145 Now Vol 7280 Fol 130
01.03.1968 (1968 to 1969)	N.S.W. Permanent Building Society Limited	Vol 7280 Fol 130
05.12.1969 (1969 to date)	# Council of the City of Parramatta	Vol 7280 Fol 130 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (19) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
28.06.1921 (1921 to 1927)	Edward Joseph Pearce (Farmer)	Book 1227 No. 357
21.09.1927 (1927 to 1947)	Walter Riddle (Grazier) (& His deceased estate)	Book 1320 No. 218
07.10.1947 (1947 to 1950)	Albert William Riddle (Stud Master)	Book 2034 No. 437
14.03.1950 (1950 to 1950)	Joyce Innes Lucas (Married Woman)	Book 2114 No. 285
14.03.1950 (1950 to 1974)	Bankers & Traders Insurance Company Limited	Book 2280 No. 131 Now Vol 7280 Fol 131
02.08.1974 (1974 to date)	# Council of the City of Parramatta	Vol 7280 Fol 131 Now 1/791693

Denotes Current Registered Proprietor

Email: grolly1@bigpond.net.au

Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
22.12.1921 (1921 to 1923)	Beatrice Sutton (Married Woman)	Book 1247 No. 218
22.12.1923 (1923 to 1926)	John Joseph Condon (Master Butcher) Richard Patrick Condon (Master Butcher)	Book 1324 No. 594
06.11.1926 (1926 to 1935)	Andrew Derrin (Merchant) James Melville Derrin (Merchant) William McLean Derrin (Merchant)	Book 1455 No. 793
23.09.1935 (1935 to 1935)	Sidney Joseph Adams (Property Owner)	Book 1729 No. 964
24.09.1935 (1935 to 1958)	Alfred Ernest Baker (Store Keeper) Arthur Frank Baker (Store Keeper)	Book 1729 No. 965
05.05.1958 (1958 to 1963)	Rumseys Seed Pty Limited	Book 2442 No. 974
22.10.1963 (1963 to date)	# Council of the City of Parramatta	Book 2674 No. 852 Now 1/791693

As regards that part marked (20) on the attached copy of D.P. 791693

Denotes Current Registered Proprietor

As regards that part marked (21) on the attached copy of D.P. 791693

This parcel of land formed part of lands originally granted to John Byrnes dated 20th May 1840

John Byrnes and his deceased estate provided a Right of Way 10 feet wide during the 1800's

It would seem that the documentary title to the site of this Right of Way remained comprised in name of John Byrnes and his deceased estate up to the date of acquisition by Parramatta City Council by notification in Government Gazette dated 21.07.1967 Folio 2665

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
21.07.1967 (1967 to date)	# Council of the City of Parramatta	Government Gazette dated 21.07.1967 Folio 2665 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (22) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
26.08.1919 (1919 to 1923)	George Sutton (Plumber)	Book 1161 No. 926
22.10.1923 (1923 to 1926)	John Joseph Condon (Master Butcher) Richard Patrick Condon (Master Butcher)	Book 1324 No. 593
06.11.1926 (1926 to 1935)	Andrew Derrin (Merchant) James Melville Derrin (Merchant) William McLean Derrin (Merchant)	Book 1455 No. 793
23.09.1935 (1935 to 1936)	Sidney Joseph Adams (Property Owner)	Book 1729 No. 964
23.03.1936 (1936 to 1940)	Garnet Evans (Gentleman) Mary Ellen Evans (Married Woman)	Book 1745 No. 222

Email: grolly1@bigpond.net.au

Service First Registration Pty Ltd

Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

Search continued as regards that part marked (22) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
15.10.1940 (1940 to 1946)	John Thomas Gettens (Valuator)	Book 1881 No. 172
06.06.1946 (1946 to 1961)	John Edwin Fitzgerald Burns (Butcher)	Book 1990 No. 477
23.02.1961 (1961 to 1977)	Burns Animal Food Company Pty Limited	Book 2568 No. 771
03.06.1977 (1977 to date)	# Council of the City of Parramatta	Government Gazette dated 03.06.1977 Folio 2209 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (23) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
25.03.1915 (1915 to 1960)	Priscilla Jane Beers (Widow)	Book 1053 No. 609
31.10.1960 (1960 to 1963)	A.J. Yeo Pty Limited	Book 2547 No. 140
12.08.1963 (1963 to 1964)	Rigneys Holdings Limited	Book 2666 No. 701
15.12.1964 (1964 to 1970)	Arthurs Food Hall Pty Limited	Book 2729 No. 888
16.101970 (1970 to date)	# Council of the City of Parramatta	Book 2989 No. 854 Now 1/791693

Denotes Current Registered Proprietor

As regards that part marked (24) on the attached copy of D.P. 791693

This parcel of land is described as Right Title and Interest (Possessory Title) in Conveyance Book 2989 No. 854. This parcel of land is contained in the descriptions of the deeds listed below

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
31.10.1960 (1960 to 1963)	A.J. Yeo Pty Limited	Book 2547 No. 140
12.08.1963 (1963 to 1964)	Rigneys Holdings Limited	Book 2666 No. 701
15.12.1964 (1964 to 1970)	Arthurs Food Hall Pty Limited	Book 2729 No. 888
16.101970 (1970 to date)	# Council of the City of Parramatta	Book 2989 No. 854 Now 1/791693

Service First Registration Pty Ltd

Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

As regards that part marked (25) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
07.05.1883 (1883 to 1927)	Ann Beale (Spinster)	Devised by the Will of Ann Beale, the Elder
27.10.1927 (1927 to 1935)	Lee Sing	Book 1491 No. 560
03.09.1935 (1935 to 1954)	Hermann Schreiber (Financier)	Book 1728 No. 337
29.09.1954 (1954 to 1968)	Raymond Frank Pantlin (Store Keeper)	Book 2320 No. 988
16.02.1968 (1968 to date)	# Council of the City of Parramatta	Book 2876 No. 449 Now 1/791693

<u># Denotes Current Registered Proprietor</u>

As regards that part highlighted pink and marked (26) on the attached copy of D.P. 791693

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
17.04.1872 (1872 to 1953)	Frederick Vahrenkamp (Cabinet Maker) (Also known as Frederick William Vahrenkamp) (& His deceased estate)	Book 130 No. 920
30.11.1953 (1953 to 1956)	James Sidney Greenfield (Master Butcher)	Book 2272 No. 996
	After viewing D.P. 161817 it was found that this parcel was included in the Right of Way It would appear that the next transaction may have been the acquisition by Parramatta City Council This parcel is now comprised in Folio Identifier 1/791693	
27.07.1990	# Council of the City of Parramatta	1/791693

Denotes Current Registered Proprietor

As regards that part highlighted orange and marked (27) on the attached copy of D.P. 791693

This parcel of land formed part of lands originally granted to John Byrnes dated 20th May 1840

John Byrnes and his deceased estate provided a Right of Way 10 feet wide during the 1800's

It would seem that the documentary title to the site of this Right of Way remained comprised in name of John Byrnes and his deceased estate up to the date of acquisition by Parramatta City Council. The only gazette that we could find vesting in the Council is the Gazette dated 27.07.1990 Folio 7070

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
27.07.1990	# Council of the City of Patramatta	1/791693

Denotes Current Registered Proprietor

Yours Sincerely Mark Groll 30 September 2011 (Ph: 0412 199 304)

Email: grolly1@bigpond.net.au

Roq:R813819 /Doc:DP 0791693 P /Rev:14-Jun-1992 /Sts:OK.OK /Prt:26-Sep-2011 12:48 /Pgs:ALL /Seq:1 of 1 Tot:pg /Stc:M

ļ

뀽 H /Seg: ALL /Pgs 48 ä 2011 26 /Prt: ğ g Sts: 992 /Rei р 693 0791 /Doc:DP :M Req:R813819 Ref:mg /Src:N

rH

17) Lit 2 09739012

1/535792

οĘ /Seq:1 /Pgs:ALL 08:55 2011 26-Sep /Prt: 뛵 Я. /Sts 1992 14-Jun /Rev д 0791693 đ :M M Reg:R811217 Ref:df /Src:

н

Γυ Apr 3141 43'4' APPN No. 29 · · · · · · · · · · · · · · N3E 16. ` `0 €_____ _______ 2111 - Alat A.S. 24 com . buy. an 69 verks . V 12 . cel (Separation) Il roch v 31 antheren ! 10 per in res 1 to ber . un such 7 year . un. ् श ् , P . . 41 L (du) de en Villand. en (س) مندمياً ə3 110010 and the second second 271 Pt: 1 John Kyrnes. j. <4 A N HO AN / Bur by Y ----the the the The always al and with the 1322 430 CALLE 2 . 450 -fole T.M. C. app of the garage 105 82. 11 1 noses had 133 Jo1 W ~1 197 Gar Red in which not sit the share 13-4 . 6 Book: No. Inst . . 152 314 :30 7 X t 18819 7. X ׳ 71

Ç

•

APPN NO. 3141 4.3 (50) P.187 / John Byunes 2-11p Allot 1A Sec 24 \$ 20.5 40 (Black) TG 5 (52) 1.148 / John Terry Hughes 120 Allot 18 Sec 24 30.9.41 GS+C (BLAR) G SING -TP41(24) V. 11 / John Elder 2r 361/2p Allot 2 Sec 24 Mines of Coal (Black) x 130 90 CV Exis J. (IT.) Byrnes to John Byrnes 571/2p Lot 4 (Red) (includes Pr Infritte) -×130 92 C, Wm Byrnes, 12× 196 259 M + -Prams in Church St apettica, put this debut I tours & TRB 1×360 898 Dis 5-Ynone I fame & lehnen. Though y amen althe Ynone I fame & lehnen. Though y amen althe Ydyddo a dywinny It, edd halts: The Ic P7 390 941 C V Barber r (1.2) Ir26p Pencil (Pt 1d ?Title) -P.13 \$390 943 C . Geo Stone / 11.26p dois marked in The descen of dot. IriGp Pt Allot 2 (Red) CR.ot. Wretd to in desc but not specifically G PSIX 130 854 C Y Elder to Beale + lanted) ~ P.52 2334 728 C 'Est Beale to Geo Stone - 361/2p Pt Allat 2 Peneri - with Rof W 10' w to R / 10' w leading into Church st -1+261/2 p + 361/2 p. (Pencil) -P.534 GII 1973 | Sect ~ Com! Bk See Sh 2 for sketch 1 54 x 660 987 M. da (1) dor do 1 P.55 902 878 C / Bk to Hamilton , Q+B in Green , - × 1075 817 East to Min WKS. by Hamilton over do' do " Re flooding +c' P.7 \$ 395 835 C. Est. Byrnes to Booth / Lost 5 Pericil with Rof W 10' Wide -P16 \$ 1078 369 C / Est Booth to Hamilton do / (RofWay omitted) · P55 \$ 1391 502 C + Hamilton to Aur @ + B. (Green) + Lot 5 (Penol) Redeser as in y Now ¥ 1391 503 M (As in Yellow) / 1467, 498 Dis S ¥14-78 793 M (1.2) dred 13914 502 -¥ 1574 783 M 121 - EO -Rec of Montofs 1478- 193 2 1574-783 25 V 1637 980 Recd in 13.91 × 130 920 C a I P. - Fred - with use of Bol W 10 while × 1399 538 C By Ful Tree to Pintla Counsil 1. 2 Allat 13 1 Black * 2000 TG3 C . Pinstla Cl. to Applt

a some a the second second . . Sh 7 Wing wall of Lennox Bridge IA 22 n 82'5 132'5 ()To R of W for use of land purchased + also st par of lat 2 . (?Specific Gf) Non Excluded from Appn and > Ente 3KGI

ч of /Seg:1 /Pgs:ALL 08:55 -2011 /Prt:26-Sep-¥ /sts:OK. /Rev:24-Nov-1992 ρ, 0610555 đ /Doc: M Reg:R811206 Ref:df /Src:

- c=15

ĺ,

/Prt:26-Sep-2011 08:55 /Pgs:ALL /Seq:2 of 5

CONVERSION TABLE ADDED IN REGISTRAR GENERAL'S DEPARTMENT

HETRES

9.360 10.109 10.322 10.322 110.322 110.322 110.322 110.322 110.322 110.322 110.322 110.325 110.325 112.75 22.005 12.75 1

50 M

101.2 107.5 183.4 227.6 505.9

D625022 (E)

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION. Ē D.P234508 D 968 13-2. 1968 & C.A. 2233/6321/A/32/17830f2071 Title System: Torrens & Old System Purpose: Subdivision Rof. Map: Parramatta Sh6 # A891807 Last Pian A 917305 DP 25055 (Pt) PLAN OF Subdivision of Lot 7 in D.P. 25055 & Land in plan annexed to dealing Nº A 917305. \$ Part of Land in plan annexed to dealing NºA 891807. Scale: 20 fact to an Inch City: Parramatta Locality: Parnamatta Parish: St. John County: Cumberland John Patrick O'Keefe 1154 Marsden Street, Paramatta registered under the Surveyors Act, 1929. nada */11 da Mul. under Surveyors Act, 1929, as amund Wineteenth December 66 fel la 5.S.Ja D ereby certify that-(a) the requirements of the Local Government A 1919 (other than the requirements for the registi tion of plc 3), and *(b) the requirements of section 34b of the Metropolity Water, Severage and Drainage Act, 1924, omendee, we been complied with by the applicant in relation to t aposed <u>SUBPINISION</u> (insert "new razd" or "sabdivision") set out herei Subdivision No2233/5521/A/32/ 1788 (Signeture) Card Council Clerk, Date 20-12-60 Council Clerk, *NOTE-This part of certificate to be deleted where the opplication is ONLY for the opening of a new rad or where the land to be subdivided its whally autide the area of a perations of the Metropolitan Water, Severage and Drainage Board. * Strike out either (1) or (2). { Insert date of survey. 7807(3)

. .

......

ł

REJECTION.	
P. 228697 Ē	
d. 💽 d 4.3:66	7
063/4109/W/32/16100121465	E ONL
iem: Old System	Sh a
Subdivision	OFFIL
Perramette Sh.6*	
do.	
vision of land in yance No.91 Bk.2185	-
les 20 feet to an inch	
Panramatta	
Cumberland	a
	ð
n.Rolnick.O.Keefe	1
NACEARD, SC. PACTRIMBLER gistered under the Surveyors Act, 1929, or emen-	0
nd has been made * (1) by me (2) under my	0
1933, and was completed on † 2.7.3-1965. Jord Under Surveyors An, 1929, as amended. 10 of Azimth. A - B	0
Council Clerk's Certificate.	
ily that— equiraments of the Local Government Act, 1919 then the requirements for the registration of	danna p
, one equirements of section 348 of the Metropolitan , Suwarage, and Drainage Act, 1924, as led.	r dele
supplied with by the applicant in relation to the Mildunia com	t Inco
uart "new road" or "subdivision") set out herein. 10.2.Q&3/410.9/11/82/1610.	er (2).
(Signature). Comment	iiher (1)
-This part of certificate to be delated where the sonly for the opening of a new road or where	the out e
be subdivided is wholly outside the eres of the Metropolitan Water Sewerage and Drainage	• 544

SURVEYORS REFERENCE 7807

roads or public reserves or create drainage reserves, easements, or restrictions as đ ES See Form ŝ WARNING: CREASING OR FOLDING WILL . LEAD TO R

DP 228697 FEET INCHES METRES - 0 1/4 0.006 - 0 1/2 0.013 - 1 1/4 0.032 - 1 3/8 0.035 - 1 3/4 0.044 - 2 1/4 0.057 - 4 1/4 0.108 - 5 0.127 - - 6 0.152 - - 7 0.178 - - 8 3/4 0.213 - 7 5/8 0.224 1 6 0.457 1 8 5/6 0.524 1 6 1/2 2.604 2 - 0.610 3 3 1/4 0.721 3 3 1/4 7.78 5.521 11 9 3.591 1.22 <th></th> <th>NVERSION TA</th> <th>BLE ADDED IN</th>		NVERSION TA	BLE ADDED IN
FEET INCHES METRES - 0 1/4 0.006 - 0 1/2 0.013 - 1 1/4 0.032 - 1 3/8 0.035 - 1 3/8 0.035 - 1 3/8 0.032 - 1 3/8 0.035 - 1 1/4 0.108 - 2 1/4 0.107 - 4 1/4 0.108 - 5 0.127 - - 6 1/4 0.210 - 8 3/8 0.224 1 6 0.497 1 3 0 1/4 0.921 3 6 1/2 2.604 2 - 0.610 3.531 1 3/8 3.693 3.521 1 3/8 3.658 3.521 1 3/8 <th>OP 228</th> <th>697</th> <th></th>	OP 228	697	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FEET	INCHES	METRES
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	0 1/4	0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	0 1/2	0,013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	1 1/4	0,032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	1 3/8	0,035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	1 0/4	0.044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6 1 / 4	0.057
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	5	0,127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	6	0.152
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	7	0.178
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	8 1/4	0.210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 3/8	0.213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	9 5/8	0.244
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6	0,457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8 5/6	0.524
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3	8 1/4	1,121
4 10 1,473 8 6 1/2 2,604 9 6 1/4 2,902 11 6 5/8 3,521 11 9 3/8 3,591 12 - 3,658 12 1 3/4 3,702 16 9 7/8 5,128 20 7 6,274 25 1 3/4 3,702 16 9 7/8 5,128 20 7 6,274 21 3/4 3,702 16 9 7/8 5,128 20 7 6,274 21 3/4 5,700 32 2 9,804 32 7 3/8 9,941 36 - 10,973 40 3 1/2 12,801 42 - 12,801 47 6 14,478 49 4/4 15,056 53 7 5/8 16,348 </td <td>ŭ</td> <td>4 7/8</td> <td>1.343</td>	ŭ	4 7/8	1.343
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	10	1.473
9 $6 1/4$ $2,902$ 11 $6 5/8$ $3,521$ 11 $9 3/8$ $3,591$ 12 $ 3,658$ 12 $1 3/8$ $3,693$ 12 $1 3/4$ $3,702$ 16 $9 7/8$ $5,128$ 20 7 $6,274$ 25 $1 3/4$ $7,664$ 28 $5/6$ $6,626$ 31 2 $9,500$ 32 2 $9,804$ 36 $ 10,973$ 40 $1/2$ $12,261$ 42 $ 12,802$ 47 6 $14,478$ 49 $3/4$ $15,056$ 537 $75/6$ $16,346$ 112 $1/2$ $34,176$ 113 $21/2$ $34,176$ 138 6 $42,215$ 149 6 $3/4$ $45,587$ 159 11 $46,743$	8	6 1/2	2,604
11 6 5/6 3,521 11 9 3/8 3,591 12 - 3,658 12 1 3/8 3,693 12 1 3/8 3,693 12 1 3/8 3,693 12 1 3/8 3,693 12 1 3/8 3,693 12 1 3/8 3,693 12 1 3/8 3,702 16 9 7/8 5,128 20 7 6,274 28 3 5/6 8,626 31 - 9,449 31 2 9,500 32 2 9,804 36 - 10,973 40 3 1/2 12,802 47 6 14,478 49 4 3/4 15,056 53 7 5/8 16,348 112 1 1/2 34,176 113 2 1/2 34,306 1212 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 <	9	6 1/4	2,902
11 9 3/8 3,591 12 - 3,658 12 1 3/4 3,702 16 9 7/8 5,128 20 7 6,274 25 1 3/4 7,664 28 5/6 8,626 31 - 9,449 32 2 9,804 32 7 3/8 9,941 36 - 10,973 40 3 1/2 12,261 42 - 12,802 47 6 14,478 49 4 3/4 15,056 53 7 5/8 16,348 112 1/2 34,176 113 2 1/2 34,506 121 9 43/4 15,056 137 75/8 16,348 121 1/2 34,176 113 2 1/2 34,506 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,547 159 11 48,743	11	6 5/8	3,521
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	9 3/8	3,591
12 1 3/4 3,702 16 9 7/8 5,128 20 7 6,274 25 1 3/4 7,664 28 3 5/6 8,626 31 - 9,449 31 2 9,500 32 2 9,804 32 7 3/8 9,941 36 - 10,973 40 3 1/2 12,281 42 - 12,802 47 6 14,478 49 4 3/4 15,056 112 1 1/2 34,176 113 2 1/2 34,176 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 752 5	12	-	3,655
16 9 7/8 5,128 20 7 6,274 25 1 3/4 7,664 28 3 5/6 8,626 31 - 9,449 32 7 3/8 9,941 36 - 10,973 40 3 1/2 12,261 47 - 12,802 47 6 14,478 49 43/4 15,056 53 7 5/8 16,348 112 1/2 34,176 113 2 1/2 34,506 121 1/2 34,506 121 1/2 34,506 121 1/2 34,506 121 1/2 34,506 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ - 10 1/2 265,6	12	1 3/0	3 702
20 7 6,274 25 1 3/4 7,664 28 3 5/6 8,626 31 - 9,449 31 2 9,500 32 2 9,804 32 7 3/8 9,941 36 - 10,973 40 3 1/2 12,281 42 - 12,802 47 6 14,478 49 4 3/4 15,056 53 7 5/8 16,348 112 1 1/2 34,176 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 752 5	16	9 7/8	5,128
25 1 3/4 7,664 28 3 5/6 8,626 31 - 9,449 31 2 9,500 32 2 9,804 32 7 8/6 9,941 36 - 10,973 40 3 1/2 12,281 42 - 12,802 47 6 14,478 49 4 3/4 15,056 53 7 5/8 16,348 112 1 1/2 34,176 113 2 1/2 34,306 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 752 5	20	7	6.274
28 3 5/6 8,626 31 - 9,449 31 2 9,500 32 2 9,804 32 7 $3/8$ 9,941 36 - 10,973 40 3 1/2 12,281 42 - 12,802 47 6 14,478 49 4 3/4 15,056 53 7 5/8 16,348 112 1 1/2 34,176 113 2 1/2 34,176 123 9 1/4 37,116 128 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 755 5	25	1 3/4	7.664
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	28	3 5/8	8,626
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	-	9,449
32 2 9,804 32 7 3/8 9,941 36 - 10,973 40 3 1/2 12,281 42 - 12,802 47 6 14,478 49 4 3/4 15,056 112 1 1/2 34,176 113 2 1/2 34,176 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 752 5	31	2	9.500
32 / 6/B 3,941 36 - 10,973 40 3 1/2 12,281 42 - 12,802 47 6 14,478 49 4 3/4 15,056 53 7 5/8 16,348 112 1 1/2 34,176 113 2 1/2 34,506 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 752 5	32	2	9.804
40 3 1/2 12.281 42 - 12.802 47 6 14.478 49 4 3/4 15.056 53 7 5/8 16.348 112 1 1/2 34.176 113 2 1/2 34.506 121 9 1/4 37.116 138 6 42.215 149 6 3/4 45.587 159 11 48.743 AC RD P SQ M - 10 1/2 265.6 - 29 3/4 752 5	32	1 076	7,741
42 - 12.802 47 6 14.478 49 43/4 15.056 53 75/8 16.348 112 11/2 34.176 13 21/2 34.506 121 91/4 37.116 138 6 42.215 149 63/4 45.587 159 11 48.743 AC RD P SQ M 101/2 265.6 29.3/4 752.5	40	3 1/2	12.261
47 6 14.478 49 4 3/4 15.056 53 7 5/8 16.348 112 1 1/2 34.176 113 2 1/2 34.306 121 9 1/4 37.116 138 6 42.215 149 6 3/4 45.587 159 11 48.743 AC RD P SQ M 10 1/2 265.6 29 3/4 763 5	42		12.802
49 4 3/4 15,056 53 7 5/8 16,348 112 1 1/2 34,176 113 2 1/2 34,176 121 9 1/4 37,116 128 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M 10 1/2 265,6 29 3/4 753 5	47	6	14.478
53 7 5/8 16,348 112 1 1/2 34,176 113 2 1/2 34,506 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M 10 1/2 265,6 29 3/4 752 5	49	4 3/4	15,056
112 1 1/2 34,176 113 2 1/2 34,506 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 753	53	7 5/8	16,346
113 2 1/2 34,506 121 9 1/4 37,116 138 6 42,215 149 6 3/4 45,587 159 11 48,743 AC RD P SQ M - 10 1/2 265,6 - 29 3/4 752 5	112	1 1/2	34,176
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	113	2 1/2	34.506
AC RD P SQ M - 10 1/2 265.6 - 29 3/4 752	121	9 1/4	37,116
159 11 48.743 AC RD P SQ M - 10 1/2 265.6	100	6 3/4	45.587
AC RD P SQ M 10 1/2 265.6 29 3/4 752 5	159	11	48,743
10 1/2 265.6	AC F	9 DI	SG M
		10 1/2	265.6

Ч /Seg:1 /Pgs:ALL ទួ .80 /Prt X ă Ř д 0025055 /Doc:DP :M Req:R811213 Ref:df /Src:

ß

οĘ 80 8 ρ., 0771 Req:R811210 /Doc:DP Ref:df /Src:M

r-I

/seq:1 /Prt:26-Sep-2011 08:55 /Pgs:ALL /Rev:14-Sep-1992 /Sts:OK.OK д Req:R811211 /Doc:DP 0233971 Ref:df /Src:M

÷

	1111247922244902223378001562556789164369308 11123222222333349444444667891644369308 11113	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.035 0.2039 0.2039 0.3561 0.279 0.3561 0.4572 0.5762 1.2299 2.75919 3.369919 4.5924 4.5919 4.56279 5.5164 4.5919 4.56279 5.5164 6.8146 6.8146 6.8146 6.8311 12.59373 12.5919 1.2299 1.2399 1.2399 1.2399 1.2399 1.2499
		- 6 - 7 - 13 3/4 - 14 - 19 1/2	151+8 177 347+6 354+1 493+2
والمقال والمستعملية والمرازا فالمالية محمد والمقال			

н of /Prt:26-Sep-2011 08:55 /Pgs:ALL /Seq:1 Reg:R811216 /Doc:DP 0106040 P /Rev:06-Jan-1993 /Sts:OK.OK Ref:df /Src:M

1	CONVERSION	TABLE ADDED IN OF LANDS
106	040	
EĘŤ	INCHES	METRES
-	1 1/4	0+932
1	1 1/4	0,305
1	6	0.457
8	5 1/2	2.591
8 10	7	2.616
10	1 5/8	3.089
iż	-	3.658
13 21	1 8 1/8	6.607
25	11 174	7.620
36	-	10.971
42 45	3	13.792
48 49	2 1/2	14.694
59	: ī	18.263
73	6 1/4	22.409
73	6 1/2	22.416
78	1 1/4	23.806
84	-	25.603
94 00	2	28.702
10	-	33.528
20	8	36.576
25 38	2	38.151
84	8	56.286
AC	RD P	SO M
-	- 36 1/4	866.3
-	- 39 1/4	992.7
		1
		ĺ
		ŀ
		1

.

/Seg:1 08:55 /Fgs:ALL /Prt:26-Sep-2011 /Sts:OK.OK -Sep-1992 /Rev: 02д 0535192 Req:R811207 /Doc:DP Ref:df /Src:M

아타 11

02418	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.019 0.114 0.203 0.241 0.899 0.914 0.914 1.321 1.715 2.254 2.305
N. 969.	$\begin{array}{c} 9 & 11 \\ 1/2 \\ 15 & 9 \\ 6/8 \\ 19 & 7 \\ 22 & 1 \\ 22 & 7 \\ 7/8 \\ 27 & 10 \\ 29 & - \\ 29 & - \\ 1/2 \\ 32 & 3/4 \\ 34 & 11 \\ 1/2 \\ 35 & 5 \\ 1/4 \\ 39 & - \\ 1/2 \\ 35 & 9 \\ 1/2 \\ 52 & 9 \\ 1/2 \end{array}$	3,035, 4,816 5,959 6,751 6,956 6,751 6,956 6,459 8,859 8,977 9,955 10,651 11,087 13,349 16,091
Americanse (25'5%) and (218%) Severation on Poulling Mit Lean Presentation.	AC RO P 3 5 3/4	50 K 76.7 145.4

/Seq:1 o /Pgs:ALL 08:55 / -2011 Sep 26-/Prt: ğ ¥. /Sts: /Rev:28-0ct-1992 բ 0739012 Req:R811215 /Doc:DP Ref:df /Src:M

н

οÊ

· · · · · · · · · · · · · · · · · · ·
1, Bruce Richard Davies, Registrar General for New South Wales, certify that this negative is a phalograph mode as a permonent record of a document in my custady this 27th day of Jonaber, 1977
kenning

ų 08:55 /Pgs:ALL /Seq:1 /Prt:26-Sep-2011 /Rev:10-Sep-1992 /Sts:OK.OK μ, Req:R811209 /Doc:DP 0569483 Ref:df /Src:M

ч

D.P. 569483 (A) 8.7.1974 (A) 8.7.1974 (A) 8.7.1974 (A) 8.7.1974 (A) 8.7.1974 (A) 8.7.1974 (A) 9.7.1974 (A)	· OFFICE USE ONLY	
).P.569483	£
CUMBERLAND	A 8.7.1974 Solution of an analysis of a second statement	N 0 0 2 4 1
A PHILLP THOMSON A PHILLP THOMSON A PHILLP THOMSON ATTA CITY COUNCIL Served and/or the Environ Art. 1950, and Constraints of the Environ Art. 1950, and Constraints of the Environ Art. 1950, and Constraints of the Environment A PHILLP THOMSON ATTA CITY COUNCIL Served and the Environment A PHILLP THOMSON ATTA CITY COUNCIL ATTA CITY COUNCIL A	CUMBERLAND	
	delete il inspolicabile).	

SURVEYOR'S REFERENCE: 73/343

2.

FIRST SCHEDULE (conflored) FIRST SCHEDULE (conflored) Internation Internation <thinternation< th=""> Internation</thinternation<>	1:17 17 19 8000	751 Src 3 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B TO (T-VEGU)	P161508649			16	ET ALSO AV	/Re	10 10 10 10 10 10 10 10	K KKYKK AL	-20	R920 524 2 1	0661355:8	ts:	>10/1 Praires A	. sc	(r= +=)		2 29-	1- (11/2)	-20	011	09	. 1:	2 /	' Pgs	:AL	L /:	Seq:	2 c
FIRST SCHEDULE (centured) REGISTERED PROPHETOR REGIS	Signolure of																denner .				the way we want	 Sec.									
FIRST SCREDULE (confined) FIRST SCREDULE (confined) MITTALE Attract Association, Bool Marine Agent, and X/(00th Adame,	ENTERED	1 - 1070	C CT	13-11-1979		bompress		Sec.					CANCELLATION				51-5-1979			31-5-1979	R161508	T920864									
FIRST SCHEDUE E (confineed) REGNITERED PROPRIETOR CODE data sua 2014 MEDITION PROPRIETOR PROPRIETOR CODE data sua 2014 PROPRIETOR	1 IIII	UA 15				the folio				GENERAL			U				Expired			Emired	Cancelled	Discharged									-Er ED
FIRST SOHEDULE (continued) REGISTERED PROPRIETOR Retrict Age, Jon Bacate Agent: An 2//001th nhme , Omitterpohen Smoth Indumnoud, and said and an antina set of set o	INSTRUMENT	DIATEOD.	DOX TOTAL	B422756		t buel to bu				REGISTRAR			Signature af Jistrar General				كستخليس	-			2	 -		5,							
FIRST SCHEDULE (continued) 8: Research Ply, Jid. REGISTERED FROPRIETOR 8: States Apr. Jid. REGISTERED FROPRIETOR 8: States Apr. Jid. Recista Apr. Jid. 10: States Apr. Jid. Recista Apr. Jid. 11: The manual set of the state Apr. Jid. Recista Apr. Jid. 11: The manual set of the state Apr. Jid. Recista Apr. Jid. 11: The manual set of the state Apr. Jid. Recista Apr. Jid. 11: The manual set of the state Apr. Jid. Recista Apr. Jid. 11: D.L. Vol.B.S. as follows: Recista Apr. Jid. 11: D.L. Vol.B.S. Adv. Adv. Adv. Adv. Adv. Adv. Adv. Adv	447196	COO	2	Transfer		the residu			6	24200-			ENTERED Reg				27-9-1976	1		26-5-1977	2 32 20 11 31	 17-11-1070		31-3-1980		1. 11 1980					
	FIRST SCHEDULE (continued) REGISTERED PROPRIETOR	LC. C. Thermondstan Throw. Ltd.	10bh Fairiok Fartridge, Real. Fairate Agent in 21/100th abare, Gmistophen Frrol. Wrierwood,	leweller in 59/100 th shere, David Garth Tethey Wiles, Bael Estate Agent, and Gail Milea his wife In 21/100 th shere as joint temants, all of Parramatta, tenanor in common.	tie that the manualitant are transmission with a first the start of th	tors Creationation of July have beamed but Jury ha	. Lapariad. Pien No.6.10555. as follows:	and when the theme and the sail with sail to be support i rely	10	REGISTAN GLINERER ALTORIZED OF THE SEAMO ON DE LI D 555		SECOND SCHEDULE (continued)	NATURE NUMBER DATE PARTICULARS	insection 1000001 00 premiese being Suitee 1 and 2. let Woon, 201 and 221	Phillip Street, Parmanatia together with rights to Jeria	Low of Roddington, Film Date of Environ	10.5.1978	Lease 9208131 of premiser heing lock-up-shop- know as 20 Phillip Street	Parmamatta, to Chuistopher Errol Underwood Stramametter	Jeweller, Date of explored - CC	DOMADLE 2123142 DEST-0 74 845300	 of Omiatorio Twoi Contactor	Mortgage R655248 to The Commercial Banking Commeny of Sydney Limited as	restards the interest of Join Patrick Partnidge	D. P. (19555) Interests created pursuants to Section 888 Convergancing Act, 1919,	by the registration of Deposited Plan 610555.					MATE, ENTRICK DIN EN TUDINA AND ANTHENTICATED BY TUD KEAL OF THE DE

monthly built

IERS SCHEDULE Confined) REDISTERED FOORERDA NUMBER ACOULE Confined) NUMBER CANCELLED REDISTERED FOORERDA REDISTERED FOORERDA REDISTERED FOORERDA NUMBER REDISTERED FOORERDA REDISTERED	S M8329 To, H	Central 535 . 7 24 Den 1				•		—				-		1						
HIST SCHEDULE (continued) Notation Notation <		Signatur Registrar C	- A				•		LATION											
Elever scontinued) Elever scontinued) (and clup of parametrix		REGISTERED	27-1-1981						CANCEL											
FIRST SCHEDULE (continued) REGISTERED PROPRIETOR Notified REGISTERED PROPRIETOR Notified Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer SECOND SCHEDULE (continued) Transfer Transfer Transfer Transfer Transfer SECOND SCHEDULE (continued) Transfer Transfer Second colspan="2" <td></td> <td>UNENT</td> <td>S198329</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>Signature of Rezistrar General</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>		UNENT	S198329	•					Signature of Rezistrar General								•			
FIRST SCHEDULE (continued) REGISTERED PROPRETOR The CLIP of Parmeetta Beneratia CANCELLED CANCELLE CANCELLED CANCELLED CANCELLE CANCELLED CANCELLE CANCELLE		INSTR	Transfer						RECISTERED											
the Clty of the Cl	FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR	Porrosofts	UNNULLILU	SEE AUIU FULIO			SECOND SCHEDULE (continued)	PARTICULARS											
Council of			Council of the City of						ATURE NUMBER									•		

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 4/610555

ł

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 14331 FOL 36

•

.

Recorded 28/3/1988	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED
8/9/1988		CONVERTED TO COMPUTER FOLIO	FOLIO NOT CREATED
26/9/1989	DP791693	DEPOSITED PLAN	CT NOT ISSUED
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	***	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 8/25055

1

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 6821 FOL 223

Recorded	Number	Type of Instrument	C.T. Issue
21/11/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
16/3/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
26/9/1989	DP791693	DEPOSITED PLAN	
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	* * *	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

Signature of Registrar-General V. C. N. GUINI, GOVERNMENT FRIMICA 3 -÷ į ENTERED . CANCELLATION į : : i. ÷ ; ţ ŝ : ľ NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED **NSTRUMENT** Signature of Registrar-General ł i : NATURE 1 ENTERED : í , i 1 ł i 1 SECOND SCHEDULE (continued) FIRST SCHEDULE (continued) 1 : i i PARTICULARS ; ******1 ; 2 SEE AUTO FOLIO CANCELLE REGISTERED PROPRIETOR ÷ ŧ à ŧ . DAYS : ÷ RUMENT ; ł 1 1. : -NUTAN Reg:R779948 /Doc:CT 10852-096 CT /Rev:24-Feb-2011 /Sts:OK.OK Ref:df /Src:M: 2 01 2 pages) VOI: 19852 FOI 30

Ł

FIRST SCREDULE (continued) FIRST SCREDULE (conti		Sro?Sn???	Aller of 2365 A		. , beq.1
FIST SCHEDULE (continued) TEALD PROPERTION TEALD PROPERTION DETENDING TEALD PROPERTION DETENDING TEALD PROPERTION DETENDING DETENDING DETENDING COLSPANE DETENDING		Signature of Registrar General	- Jenniterent		
IBST SCHEDULE (continued) ERED PROMETOR ERED ERED ERED ERED ERED ERED ERED ERE		ENTERED	15.5.94		
IIIST SCHEDULE (centinued) ERED PROPRIETCA ERED PROPRIETCA ERED PROPRIETCA ERED PROPRIETCA ERED Product AL I an MANA AL	. 4	I DATE	313-34	-	
FIRST SCHEDULE (continued) FIRST SCHEDULE (continued) TERD PROPRIETON REID PROPRIETON Colspan="2">Continued) Colspan="2">Colspan="2">Continued) Colspan="2">Colspan="2">Continued) Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2"		INSTRUMENT	Kg. Kg. 2.6.3.6.3.		
EIRST SCHEDULE (continued) TERED PROPRIETOR TERED PROPRIETOR TERED PROPRIETOR EIRST SCHEDULE (continued) TERED PROPRIETOR EIRST SCHEDULE (continued) TERED PROPRIETOR EIRST SCHEDULE (continued) MEGAL SECOND SCHEDULE (continued) MEGAL ARTICULARS MERCULARS MERCULARS		NATURE	Leangler Enterthe		
	FIRST SCHEDULE (continued)		there it 34 500 and the regulated of the in- the regulated of the the resonance of the the resonance of the the resonance of the the resonance of the resonance of the resonance of the resonance of the the resonance of the		
		REGISTERED PROPRIETOR	the left on regard of the solution of the left of the source of the left of the dead of the left of the		

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 21/9/2011 9:15AM

FOLIO: 13/234508

f

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 10852 FOL 96

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
14/3/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
26/9/1989	DP791693 ·	DEPOSITED PLAN	
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	***	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

100

A division of the Department of Finance & Services

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - DOCUMENT INQUIRY Document Number: CA22933 Document Type: CONVERSION ACTION Document Status: ACTION COMPLETE Document Status Date: 25/10/2002 Affected Titles: BK 2853 NO 38 Titles Created: 2/228697

*** END OF SEARCH ***

surv:scim-grollm

PRINTED ON 21/9/2011

LEAP Searching An Approved LPI NSW Information Broker

s.

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 21/9/2011 9:15AM

FOLIO: 2/228697

First Title(s): OLD SYSTEM Prior Title(s): CA22933

Recorded	Number	Type of Instrument	C.T. Issue
8/9/1987	CA22933	CONVERSION ACTION	FOLIO CREATED EDITION 1
24/3/1988	X299878	GRANT OF EASEMENT	EDITION 2
2/3/1989	Y64150	CAVEAT	
25/9/1989	Y613762	WITHDRAWAL OF CAVEAT	
26/9/1989	DP791693	DEPOSITED PLAN	
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 21/9/2011 9:17AM

FOLIO: 3/233971

-

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 10812 FOL 96

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
14/3/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
24/3/1988	X299878	GRANT OF EASEMENT	EDITION 1
26/9/1989	DP791693	DEPOSITED PLAN	
29/8/1990	Z212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

df

PRINTED ON 21/9/2011

Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronic by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

-

A division of the Department of Finance & Services

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - DOCUMENT INQUIRY Document Number: FA339 Document Type: CONVERSION ACTION Document Status: ACTION COMPLETE Document Status Date: 6/7/2005 Affected Titles: BK 2401 NO 842 Titles Created: 10812-96 10812-97

*** END OF SEARCH ***

surv:scim-grollm

PRINTED ON 21/9/2011

1 N J 1

			•							•		·		•							•				•			•			۰,	•		۰.	•	2
						•				•						·									•	•	•••		۰.		•	:	:		.2	
r					ʻ.																	•	•	,								•				
	1	General								•													i.				.								Ι.	
	Tensrei	uturr.																Į		ľ				ŀ											1	İ.
		2	ļ						ŀ	ŀ								Ŀ														ŀ				
		2 ·															NOL				.							· ·	İ		-	Γ			Γ	
		ENI				ĺ											CELLA		·	.							ľ		·		ľ.					
	┢	╓┼				 			<u> </u> 	1 		[·		Ś		_	<u> </u> 		 	ļ	1				. 	 		 	<u> </u>	<u> </u>			
		DATE -	1						ĺ							l			i													1.				
Ľ		.	ļ	.	-			-							ŀ			ł	.				ļ	ĺ					İ.			. *		· .	: .	
		Π	·			İ								•••••	1						[. 			• •		-
	RUMEN	WUHBER												:	ŀ		je o			•				.	{	[•		. 	•		
	12NI		4	1		<u> </u>	_									1	Signatur Ittar G											•			·			:		
													•								 F	<u>.</u>	ļ					•					•		<u>.</u>	
		NATUR															RED	1					ĺ		.					•				зе.		
															ľ	·	ENG				۰.						ļ					.				•
					-									•										<u> </u>	[•			
рэли													ĺ	•		inued															•		•	•	-	
conti																Coll (Coll				•••							÷									. i . i
ULE .(DULE						•									•					•••
CHED						Ì			Ì							SGE																		-		:
RST S	ľ													-		B.														۰.						
																뜅	ICULAR					•								1						
•		Ľ						Ģ	<u>]</u>							•	PART			•	•													.		:
	ក	1.		1				탁							•									,												
·	PRIET	ľ						y						·																						:
	o PRO										2	포								•											·		:			
	TERE	ŀ					1	Į	5		-			1		•												•							1	
	REGIS					•																				•								•		
																	T			Í	ĺ					1	Ì			•	ĺ			1		
		ľ		Ì								.					DATE													Í						
								ĺ									-				<u>.</u>	· [_		_				_			,	-	
												ŀ					IENT IER		•		•			·								·		:		
													•	·			STRUP AUF																	:	ŀ	
].							ļ							- + 	1	.		[[\dashv			
								ļ						ļ			JAC			·		-			•		•							.		
				ŀ											·		ЛАН	· . •					•		•		.			·						
•		L	L						<u> </u>	1	<u> </u>	1		·	. I		Ц		.	<u> </u>		<u> </u>				-	1			<u> </u>			ŀ	•		:

" - Martin Co

		riksi scheuule (continued)					5525
•	REGISTERED PROF	RIETOR	NATURE	INSTRUMENT NUMBER	ENTER ENTER	ED Signatore of Rethirar-General	1 0 0
iting Church in Austr	calia Property Trust (<u>N</u> .S.	K•).	Applicati	on s122887	2-12-19	30	- -
171058 Reg	iistered S. 11.87						
folio is cancelled as to v	who!e/part upon creation						
smputer tolios for Icts ementioned plan,	1, 2- in the		44 AV				••••
•							
		CEFOND COLEDITE ZAME					
INSTRUMENT		STRONG SCHEDOLE (CONUMAED)		Ciantrura ad		-	
URE NUMER		PARTICULARS	ENTERED	Registrar-General	CANCELLAT	NO	
						•	
				··· ··································			
					-		
							,
							
	•	•			•		

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------21/9/2011 9:14AM

FOLIO: 1/771058

First Title(s): OLD SYSTEM Prior Title(s): VOL 10812 FOL 97 VOL 10812 FOL 99

	Recorded	Number	Type of Instrument	C.T. Issue
	9/11/1987	DP771058	DEPOSITED PLAN	FOLIO CREATED EDITION 1
	24/3/1988	X299877	TRANSFER	EDITION 2
	24/3/1988	X299878	GRANT OF FASEMENT	
	26/9/1989	DP791693	DEPOSITED PLAN	
	29/8/1990	Z212111	DEPARTMENTAL DEALING	
2	0/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

df

PRINTED ON 21/9/2011

. .

V. C. M. ALONE. GOVCINILY FULLE	ENTERED Signature of Registrar-General				i	 													•
V. C. X. BUIN	ENTERED		.																
		2-12-1980.							CANCELLATION			-			[-		-		
	DATE															-			
INSTRUMENT	NUMBER	n S122887	•						Signature of										UTART ANT CAN
	NATURE	<u>Applicatio</u>							ENTERED									-	DEGISTOLO CEN
FIRST SCHEDULE (continued) REGISTERED PROPARETOR		rch in Australia Property Trust (N.S.N.).	1058 Registrated S.11.87 concelled of to Whelstrant retion frontien	folios for lots 1, 2 in the red plan.				SECOND SCHEDULE (continued)	NSTRUMENT NUMERA DATE PARTICULARS										NOTE: ENTRIES RULED THROUGH AND ANTHERTICATED BY THE CEAP AF THE
		The Uniting Chu	This folio is	<u>of computer</u> abovemention					NATURE 1										

.

Historical Title

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------21/9/2011 9:14AM

FOLIO: 5/233971

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 10812 FOL 98

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
14/3/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
26/9/1989	DP791693	DEPOSITED PLAN	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	***	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

	REGISTERED PROPRIETOR		ATTA NATION AND A CONTRACT AND A CON	17 DATE	ENTERED	Approve of Approve of
010 ±010						
	SECOND SCHEDULE	(continued)				
INSTRUMENT NUHBER 1 DATE	PARTICULARS	ENTERE	D Signature of Registrar-General		CANCELLATION	
		- - -				
-						
-				-		
		•				
			•			

LEAP Searching An Approved LPI NSW Information Broker

,

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

21/9/2011 9:16AM

FOLIO: 7/233971

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 10812 FOL 100

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
14/3/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
26/9/1989	DP791693	DEPOSITED PLAN	
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	***	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 2C/106040

ł

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 8055 FOL 176

Recorded	Number	Type of Instrument	C.T. Issue
31/8/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
2/11/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	***	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

										Ref Y Jysin
				FIRST SCHEDULE (continued)						: df
				REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signatura af Registrar Ceneral	23/1999/Jz
8	Man We' Yuen o	f Farrantia	Retired		Transfer	\$261901		-6=7=1979-	é.	2 0 2/2L20
77	Lapour Phy. Li	imited by Tran	Bter_V73840	05, Registered 12-6-1905.						Micaol oo 1
ቝ	138-73-801.2	ed as to whole	International Contraction	coolition to divi					4.V.#	
F 7	computer folios	for lots / du								cr1(1)8
(ř:	overnentioned pl	.uo								S Ylu obegah to
33			0.80 0.80							Slotter you with the
l			9							(199967) W
		•			•					5 4424 435
'ι•Λ							-			Review
				and a second second second and and and and and and a second second second second second second second second se						27-
										THURDSOLNI
				SECOND SCHEDULE (continued)						-2 2/07
	NATURE	INSTRUMENT NUMBER	DATE	PARTICULARS	ENTERED	Signalure of Registrar General	,	CANCELLATION		1693452m h H
•	Mox Lizzgo	-0596664		to Norman Phoness Endth, Laurel Pay. Polind, Maree Metalic						173840K DM
										120-
•							Discharged	140403	to we have	6 by 6.758LAN
	Gevert			-by-Phrito Br (artist see Physical da		and the second	Withdrawn	s751976	and a	sc (1 2
	Mortguye	6966290		to General. Oredities himited and	12-2-1979	4	Discharged	T40404	here is	
	Hortgage	0536661	-	- Yerietion 2199451	1961-2-17-		Cancel led	T40403	Karine	Prt
	3644296 TERE	etto Donusur	CdRard_01Bri	<u>ibn and Tavins-O'Brien as Joint tenants - toschier sith an out</u>	iton of				:	::1:
	ouat	rate Ranites	<u></u>	- Registered -11=11=1981.		and a	Expired		(23)	9-S
	MONTGACE	1628956			2861-6-22		Discharged	V738404	(j)	ep-2
										2011
. (,					-				. 13
50 6 2			•		•			-		3:54
2 DC		3								
10										Pg:
а б										3:A]
₽d)	· · · · · · · · · · · · · · · · · · ·							-		
					•					/Se
						-	, ,	•		q:2
		N	IOTE: ENTRIE	IES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE RE	EGISTRAR GER	HERAL ARE CA	NCELLED			of
13	Section 2 2 22	. N. & M		「「なる」では、「ない」ではないないない。「ない」ので、「ない」では、「ない」では、「ない」では、「ない」で、「ない」では、「ない」で、「ない」で、「ない」で、「ない」で、「ない」で、「ない」で、「ない」		のないです。				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Ŷ

.

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 2/739012

First Title(s): OLD SYSTEM Prior Title(s): VOL 13304 FOL 228

Recorded	Number	Type of Instrument	C.T. Issue
28/11/1986	DP739012	DEPOSITED PLAN	FOLIO CREATED EDITION 1
12/2/1987	W743850	TRANSFER	EDITION 2
26/9/1989	DP791693	DEPOSITED PLAN	
29/8/1990	Z212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

df

.

PRINTED ON 21/9/2011

.

Req:R779943 /Doc:CT 11172-174 CT /Rev:04-Feb-2011 /Sts:OK.SC /Prt:19-Sep-2011 13:54 /Pgs:ALL /Seq:1 of 2 __... / Pgs:ALI Ref:df /Src:M 1117217 CATE OF TITLE ERTY ACT, 1900, as amended. NEW SOUTH WALES 1 Vol. 11172 Fol. 174 Application No. 37494 Prior Title Vol.7280 Fol.130 **e** 1 ED. 30-10-1969 £ ----Foi. I certify that the person described in the First Schedule is the registered proprietor of the undermentioned subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. estate in the land within described না -----SEE AUTO FOLIO Wilness L. Hucketepp. Registrar General. WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE. PLAN SHOWING LOCATION OF LAND 1) Vol.. Page Persons are cautioned against altering or adding to this certificate or any notification hereon 20.500 % 20% 14 P 333263 بيت (برد مان , i, ų, 5 ź Å CHURCH S ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot I in Deposited Plan 535192 in the City of Perramatta Parish of St.John and County of Cumberland being part of Allotment IA of Section 24 granted to John Byrnes on 20-5-1840. FIRST SCHEDULE ERANGINE BUILDING SOCIETY LIMITED .--SECOND SCHEDULE GRY 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. $RwJ(SB)^2$. Right of Way created by Deed Book 2268 No.475 affecting the piece of land 3 feet wide and variable width shown in the plan hereon. 250 Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

	Signatura of	The second second						 	. 1	 :	: : : :		
	ENTERED	6011- 4- 62							; : ;	. I	· ·		
	1 DATE	2-12-1969							· · ·	; ; ; ; .	• •		
	INSTRUMENT	881 1/87			· ·	Signature of	Argittar General		:	· · ·			
	HATURE	transfe				ENTREED			•	· · · · ·			
FIRST SCHEDULE (continued)	EUSIEREU FROFRIEIOR	ily of Paramatla	CANCELLED	SEE AUTO FOLIO		SECOND SCHEDULE (continued) PARTICILIAS							
· ·	2	e bane buncil of the l				INSTRUMENT			· · · · · · · ·				

.

۰.,

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

21/9/2011 9:13AM

FOLIO: 1/535192

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11172 FOL 174

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
8/7/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
26/9/1989	DP791693	DEPOSITED PLAN	
29/8/1990	2212111	DEPARTMENTAL DEALING	
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED
	* * *	END OF SEARCH ***	

df

PRINTED ON 21/9/2011

1.5

(19

Reg:R Ref:d	7799 € /s	44 [rc:]	/Doc M~	:CT	124	95-	115	СТ /	Rev:(02-F	eb-2	011	/st	s:0	K. S	с ,	/Prt	::19)-s(ep-2	2011	13	: 54	/P	js:/	LL	/Sec	[:2 of
		١.																										•
			1197																									
	Signature of Resistrer General	J. Server		0 Tz			*****											;		:								
	ENTERED	23-8-1974							·····	:		ANCELLATION											****					
	DATE	2-6-1974										0																ELED
	INST RUMENT NUMBER	N974041										lignalure of Istrar General																AL ARE CANCE
	NATURE	Transfer										ENTERED Reg																STRAR GENER
FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR	of Parramaths		PANDELLEN	CANVULLELLU		SEE AUTO EQUO				SECOND SCHEDULE (continued)	DATE PARTICULARS																NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE R
		of the City									10675001	NUMBER											 					
		The Council										NATURE																
• <u> </u>		۶I	L L .I.	P-1	£ 6	572	i t		٥٨													(50	6od Z	; Jo ;	ູ ອຸຣົເ	Pd)		-

1 .

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------21/9/2011 9:13AM

FOLIO: 2/569483

ţ

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 12495 FOL 115

Recorded	Number	Type of Instrument	C.T. Issue				
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED				
5/8/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED				
26/9/1989	DP791693	DEPOSITED PLAN					
29/8/1990	Ż212111	DEPARTMENTAL DEALING					
20/11/1990	DP791693	DEPOSITED PLAN	FOLIO CANCELLED				
	***	END OF SEARCH ***					

df

PRINTED ON 21/9/2011

15:23 -2011 /Prt:30-X ğ /Sts: 1992 Å 2 /Rev អ 0161817 /Doc:DP

Title Search

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/791693 _ _ _ _ _ _ SEARCH DATE TIME EDITION NO DATE _ _ _ _ _ _ _ _ _ _ _ _ ----19/9/2011 7:26 AM 1 20/11/1990 LAND LOT 1 IN DEPOSITED PLAN 791693 AT PARRAMATTA LOCAL GOVERNMENT AREA PARRAMATTA PARISH OF ST JOHN COUNTY OF CUMBERLAND TITLE DIAGRAM DP791693 . FIRST SCHEDULE -----PARRAMATTA CITY COUNCIL (PA62189) SECOND SCHEDULE (0 NOTIFICATIONS) -----NTT. NOTATIONS _ _ _ _ _ _ _ _ . NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO. UNREGISTERED DEALINGS: NIL *** END OF SEARCH ***

df

PRINTED ON 19/9/2011

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. Leap Searching an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B (2) of the Real Property Act 1900.

Appendix E

WorkCover Search Documentation

14 OCT 2011

-

Our Ref: D11/128391 Your Ref: Kate Sargent

12 October 2011

Attention: Kate Sargent Douglas Partners PO BOX 472 West Ryde NSW 1685

Dear Ms Sargent,

RE SITE: 12-14 Phillip St & 333 Church St Parramatta NSW

I refer to your site search request received by WorkCover NSW on 4 October 2011 requesting information on licences to keep dangerous goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover NSW has not located any records pertaining to the above mentioned premises.

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones Senior Licensing Officer Dangerous Goods Team

Appendix F

Section 149 Certificates

PLANNING CERTIFICATE

CERTIFICATE UNDER SECTION 149

Environmental Planning and Assessment Act, 1979 as amended 1998

Douglas Partners Pty Ltd 96 Hermitage Road WEST RYDE NSW 2114

Certificate No: 2011/4259

Fee: \$133.00

- Issue Date: 11 October 2011
- **Receipt No:** 3479836
- Applicant Ref: KATHRYNE SARGENT

DESCRIPTION OF LAND

Address:	12-14 Phillip Street								
	PARRAMATTA	NSW	2150						

Lot Details: LOT 1 DP 791693

SECTION A

The following Environmental Planning Instrument to which this certificate relates applies to the land:

Parramatta City Centre Local Environmental Plan 2007 (as amended)

For the purpose of **Section 149(2)** it is advised that as the date of this certificate the abovementioned land is affected by the matters referred to as follows:

PARRAMATTA CITY COUNCIL

Printed Date: 12/10/2011

30 Darcy Street Parramatta NSW 2150Phone 02 9806 5050Fax 02 9806 5917DX 8279 ParramattaPO Box 32 Parramatta NSW 2124ABN 49 907 174 773www.parracity.nsw.gov.au

The land being zoned:

Zone B4 Mixed Use

1 Objectives of zone B4 Mixed Use

- To provide a mixture of compatible land uses.
- To integrate suitable business, office, residential, retail and other development in accessible locations so as to maximise public transport patronage and encourage walking and cycling.
- To create opportunities to improve the public domain and pedestrian links within the Mixed Use Zone.
- To support the higher order Commercial Core Zone while providing for the daily commercial needs of the locality, including:
 - · commercial and retail development,
 - cultural and entertainment facilities that cater for a range of arts and cultural activity, including events, festivals, markets and outdoor dining,
 - tourism, leisure and recreation facilities,
 - social, education and health services,
 - high density residential development.
 - To protect and enhance the unique qualities and character of special areas within the Parramatta city centre.

2 Permitted without consent

Nil

3 Permitted with consent

Any other development not otherwise specified in item 2 or 4

4 Prohibited

Car parks (except those required by this Plan or public car parking provided by or on behalf of the Council); Caravan parks; Dual occupancies; Dwelling houses; Extractive industries; Home occupation (sex services); Industries; Light industrial retail outlets; Mines; Vehicle body repair workshops; Warehouse or distribution centres

Zone RE1 Public Recreation

1 Objectives of zone RE1 Public Recreation

- To enable land to be used for public open space or recreational purposes.
- To provide a range of recreational settings and activities and compatible land uses.
- To protect and enhance the natural environment for recreational purposes.
- To conserve, enhance and promote the natural assets and cultural heritage significance of Parramatta Park.
- To recognise and increase Parramatta Park's role as a community and recreational resource for the people of Parramatta and Western Sydney.
- To improve public access to Parramatta Park and the Parramatta River and to ensure the Park forms an extension to the civic and public spaces of the city centre.
- To achieve environmental management best practice that promotes the natural assets of Parramatta Park.
- To protect the ecological, scenic and historical values along the Parramatta River.
- To allow for water-based recreation and related uses.
- To create a riverfront recreational opportunity that provides for a high quality relationship between the built and natural environment.

2 Permitted without consent

Environmental facilities; Environmental protection works

3 Permitted with consent

Boat sheds; Car parks (but only as required by this Plan or public car parking provided by or on behalf of the Council); Child care centres; Community facilities; Cycle ways; Fences; Information and education facilities; Jetties; Kiosks; Markets; Picnic facilities; Recreation areas; Recreation facilities (indoor); Recreation facilities (outdoor); Restaurants; Roads; Sea walls; Slipways; Walking trails; Water recreation structures; Waterway access stairs; Wharves

4 Prohibited

Any other development not otherwise specified in item 2 or 3

Unzoned Land

- Development may be carried out on unzoned land only with consent.
- Before granting consent, the consent authority:

(a) must consider whether the development will impact on adjoining zoned land and, if so, consider the objectives for development in the zones of the adjoining land, and

(b) must be satisfied that the development is appropriate and is compatible with permissible land uses in any such adjoining land.

SECTION B

The land is affected by State Environmental Planning Policies and Regional Environmental Plans as detailed in Annexure "B1".

The land is not affected by Draft Environmental Plans which have been placed on Public Exhibition but which has not yet been prescribed.

Is affected by Parramatta City Centre Development Control Plan 2007 as amended. This development control plan complements and reinforces the aims and objectives of the Parramatta City Centre Local Environmental Plan 2007 by establishing guidelines and controls for the future built form of Parramatta City Centre.

Parramatta Development Control Plan (DCP) as amended for Sex Services and Restricted Premises applies to the land.

Parramatta Development Control Plan (DCP) for Places of Public Worship applies to all land within the City of Parramatta.

The Parramatta Child Care Centres Development Control Plan applies to all land within the City of Parramatta.

The Minister for Planning and Infrastructure has issued directions that provisions of an EPI do not apply to certain Part 4 development where a concept plan has been approved under Part 3A.

The City Centre Civic Improvement Plan 2007 applies to this land.

The land is affected by a Tree Preservation Order.

Council has not been notified of an order under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

The land is not affected by road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993.
- (b) Any Environmental Planning Instrument.
- (c) Any Resolution of Council.

The land is not affected by Section 15 of the Mine Subsidence Compensation Act 1961 proclaiming land to be a Mine Subsidence District.

The land is not bushfire prone land.

An item of environmental heritage IS NOT situated on the land.

The land IS NOT in a conservation area.

The Director General with responsibility for the Threatened Species Conservation Act 1995 has not advised Council that the land includes or comprises a critical habitat.

The Parramatta City Centre Local Environmental Plan 2007 clause 25 provides for acquisition of certain lands by public authorities.

The land is not affected by Section 38 or 39 of the Coastal Protection Act 1979.

Has an order been made under Part 4D of the Coastal Protection Act 1979 in relation to emergency coastal protection works (within the meaning of the Act) on the land (or on public land adjacent to that land)?

Has Council been notified under section 55x of the Coastal Protection Act 1979 that emergency coastal protection works (within the meaning of the Act) have been placed on the land (or on public land adjacent to that land)? **NO**

Has the owner (or any previous owner) of the land been consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act)?

Council has not adopted a policy to restrict the development of the land by reason of the likelihood of projected sea level rise (coastal protection), tidal inundation, subsidence or any other risk.

Site Compatibility Certificate

At the date of issue of this certificate Council is not aware of any

- a. Site compatibility certificate (affordable rental housing),
- b. Site compatibility certificate (infrastructure),
- c. Site compatibility certificate (seniors housing)

in respect to the land issued pursuant to the Environmental Planning & Assessment Amendment (Site Compatibility Certificates) Regulation 2009 (NSW).

The land is **not affected** by any of the matters contained in Clause 59(2) as amended in the Contaminated Land Management Act 1997 – as listed

- a. that the land to which the certificate relates is significantly contaminated land
- b. that the land to which the certificate relates is subject to a management order
- c. that the land to which the certificate relates is the subject of an approved voluntary management proposal
- d. that the land to which the certificate relates is subject to an ongoing maintenance order
- e. that the land to which the certificate relates is the subject of a site audit statement

Council has adopted a policy covering the entire City of Parramatta to restrict development of any land by reason of the likelihood of flooding.

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

This does not constitute a Complying Development Certificate under section 85 of the EP&A Act

This information only addresses matters raised in **Clauses 1.17A (c) and (d) and 1.19** of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

It is your responsibility to ensure that you comply with the general requirements of the State Environmental Planning Policy (Exempt and Complying Codes) 2008. Failure to comply with these provisions may mean that a Complying Development Certificate issued under the provisions of State Environmental Planning Policy (Exempt and Complying Codes) 2008 is invalid.

General Housing Code

Complying Development pursuant to the General Housing Code **may not** be carried out on the land. The land is affected by specific land exemptions under **Clause 1.19**.

• land is identified on an Acid Sulfate Soils Map as being part Class 1,

Housing Alterations Code

Complying Development pursuant to the Housing Alterations Code **may** be carried out on the land under **Clause 1.17A (c) and (d)**

Complying Development pursuant to the Housing Alterations Code **may** be carried out on the land under **Clause 1.19**.

General Development Code

Complying development pursuant to the General Development Code **may** be carried out on the land under **Clause 1.17A (c) and (d)**

Complying Development pursuant to the General Development Code **may** be carried out on the land under **Clause 1.19**

Demolition Code

Complying development pursuant to the Demolition Code **may** be carried out on the land under **Clause 1.17A (c) and (d)**

Complying Development pursuant to the Demolition Code **may** be carried out on the land under **Clause 1.19**.

General Commercial and Industrial Code

Complying development pursuant to the General Commercial and Industrial Code **may** be carried out on the land under **Clause 1.17A (c) and (d)**

Complying Development pursuant to the General Commercial and Industrial Code **may** be carried out on the land under **Clause 1.19**

SPECIAL NOTES

Acid Sulphate Soils Class 1 – development consent is required for the carrying out of works described in the Table clause 33B of the Parramatta City Centre Local Environmental Plan 2007.

Acid Sulphate Soils Class 4 – development consent is required for the carrying out of works described in the Table clause 33B of the Parramatta City Centre Local Environmental Plan 2007.

Applicants for Sections 149 Certificates are advised that Council does not hold sufficient information to fully detail the effect of any encumbrances on the title of the subject land. The information available to Council is provided on the basis that neither Council nor its servants hold out advice or warrant to you in any way its accuracy, nor shall Council or its servants, be liable for any negligence in the preparation of that information. Further information should be sought from relevant Statutory Departments.

<u>SECTION C</u> The following additional information is issued under Section 149(5)

Pursuant to S149(5) the Council supplies information as set out below on the basis that the Council takes no responsibility for the accuracy of the information. The information if material should be independently checked by the applicant.

Aboriginal Heritage – High Sensitivity – potential to contain items of Aboriginal heritage. Contact Council's Customer Service/Duty Planner (02) 9806 5050 for more information.

This site is coloured on the Key Sites Map and refers to Clause 22B Design Excellence of the Parramatta City Centre Local Environmental Plan 2007.

The land is affected by a 100 year Average Recurrence Interval flood as indicated by Council's current flooding information. As such Council is required to take that into account when determining any development application made in respect of the land.

Further information is available at the Design Services Section within Council's Technical Services Unit.

Additional advice should be also sought from an appropriately qualified person as to the extents and potential hazards associated with the likely flooding of the land. The names of qualified persons maybe obtained from the Institution of Engineers Australia.

ANNEXURE "B1"

issued pursuant to Section 149 of the Environmental Planning and Assessment Act 1979. The following information is supplied in respect of Section 149 and embodies the requirements of Department of Planning Circular No. A2 dated 17 March 1989 and the Ministerial Notification dated 15 December 1986.

STATE ENVIRONMENTAL PLANNING POLICY NO.6 - Number of Storeys in a Building

STATE ENVIRONMENTAL PLANNING POLICY NO.10 - Retention of Low Cost Rental Accommodation STATE ENVIRONMENTAL PLANNING POLICY NO.19 - Bushland in Urban Areas STATE ENVIRONMENTAL PLANNING POLICY NO.21 - Caravan Parks STATE ENVIRONMENTAL PLANNING POLICY NO.22 - Shops and Commercial Premises STATE ENVIRONMENTAL PLANNING POLICY NO.32 - Urban Consolidation (Redevelopment of Urban Land) STATE ENVIRONMENTAL PLANNING POLICY NO.33 - Hazardous and Offensive Development STATE ENVIRONMENTAL PLANNING POLICY NO.55 - Remediation of Land STATE ENVIRONMENTAL PLANNING POLICY NO.64 - Advertising and Signage STATE ENVIRONMENTAL PLANNING POLICY NO.65 - Design Quality of Residential Flat Development. STATE ENVIRONMENTAL PLANNING POLICY NO.70 - Affordable Housing (Revised Schemes) STATE ENVIRONMENTAL PLANNING POLICY - (Housing for Seniors or People with a Disability) 2004 STATE ENVIRONMENTAL PLANNING POLICY - (Building Sustainability Index: BASIX) 2004 STATE ENVIRONMENTAL PLANNING POLICY - (Major Projects) 2005 STATE ENVIRONMENTAL PLANNING POLICY - (Mining, Petroleum Production and Extractive Industries) 2007 STATE ENVIRONMENTAL PLANNING POLICY (Temporary Structures and Places of Public Entertainment) 2007 STATE ENVIRONMENTAL PLANNING POLICY (Infrastructure) 2007 STATE ENVIRONMENTAL PLANNING POLICY (Exempt and Complying Development Codes) 2008 STATE ENVIRONMENTAL PLANNING POLICY (Affordable Rental Housing) 2009 STATE ENVIRONMENTAL PLANNING POLICY (Urban Renewal) 2010 SYDNEY REGIONAL ENVIRONMENTAL PLAN NO.9 (No.2) - Extractive Industries SYDNEY REGIONAL ENVIRONMENTAL PLAN NO.18 - Public Transport Corridors

SYDNEY REGIONAL ENVIRONMENTAL PLAN NO.24 - Homebush Bay Area

SYDNEY REGIONAL ENVIRONMENTAL PLAN – (Sydney Harbour Catchment) 2005

N.B. All enquiries as to the application of Draft, State and Regional Environmental Planning Policies should be directed to The Department of Infrastructure Planning and Natural Resources – 23-33 Bridge Street Sydney NSW 2000.

9

Dr Robert Lang Chief Executive Officer

malmon

per

dated 11 October 2011

PLANNING CERTIFICATE

CERTIFICATE UNDER SECTION 149

Environmental Planning and Assessment Act, 1979 as amended 1998

Douglas Partners Pty Ltd 96 Hermitage Road WEST RYDE NSW 2114

Certificate No: 2011/4249

Fee: \$133.00

Issue Date: 10 October 2011

Receipt No: 3479836

Applicant Ref: KATHRYNE SARGENT

DESCRIPTION OF LAND

Address:	333 Church Stre	et	
	PARRAMATTA	NSW	2150

Lot Details: Lot 3 DP 825045

SECTION A

The following Environmental Planning Instrument to which this certificate relates applies to the land:

Parramatta City Centre Local Environmental Plan 2007 (as amended)

For the purpose of **Section 149(2)** it is advised that as the date of this certificate the abovementioned land is affected by the matters referred to as follows:

Printed Date: 10/10/2011

PARRAMATTA CITY COUNCIL 30 Darcy Street Parramatta NSW 2150Phone 02 9806 5050Fax 02 9806 5917DX 8279 ParramattaPO Box 32 Parramatta NSW 2124ABN 49 907 174 773www.parracity.nsw.gov.au

The land being zoned: Zone B4 Mixed Use

1 Objectives of zone B4 Mixed Use

- To provide a mixture of compatible land uses.
- To integrate suitable business, office, residential, retail and other development in accessible locations so as to maximise public transport patronage and encourage walking and cycling.
- To create opportunities to improve the public domain and pedestrian links within the Mixed Use Zone.
- To support the higher order Commercial Core Zone while providing for the daily commercial needs of the locality, including:
 - commercial and retail development,
 - cultural and entertainment facilities that cater for a range of arts and cultural activity, including events, festivals, markets and outdoor dining,
 - · tourism, leisure and recreation facilities,
 - social, education and health services,
 - high density residential development.
 - To protect and enhance the unique qualities and character of special areas within the Parramatta city centre.

2 Permitted without consent

Nil

3 Permitted with consent

Any other development not otherwise specified in item 2 or 4

4 Prohibited

Car parks (except those required by this Plan or public car parking provided by or on behalf of the Council); Caravan parks; Dual occupancies; Dwelling houses; Extractive industries; Home occupation (sex services); Industries; Light industrial retail outlets; Mines; Vehicle body repair workshops; Warehouse or distribution centres

SECTION B

The land is affected by State Environmental Planning Policies and Regional Environmental Plans as detailed in Annexure "B1".

The land is not affected by Draft Environmental Plans which have been placed on Public Exhibition but which has not yet been prescribed.

Is affected by Parramatta City Centre Development Control Plan 2007 as amended. This development control plan complements and reinforces the aims and objectives of the Parramatta City Centre Local Environmental Plan 2007 by establishing guidelines and controls for the future built form of Parramatta City Centre.

Parramatta Development Control Plan (DCP) as amended for Sex Services and Restricted Premises applies to the land.

Parramatta Development Control Plan (DCP) for Places of Public Worship applies to all land within the City of Parramatta.

The Parramatta Child Care Centres Development Control Plan applies to all land within the City of Parramatta.

The Minister for Planning has issued directions that provisions of an EPI do not apply to certain Part 4 development where a concept plan has been approved under Part 3A.

The City Centre Civic Improvement Plan 2007 applies to this land.

The land is affected by a Tree Preservation Order.

Council has not been notified of an order under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

The land is not affected by road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993.
- (b) Any Environmental Planning Instrument.
- (c) Any Resolution of Council.

The land is not affected by Section 15 of the Mine Subsidence Compensation Act 1961 proclaiming land to be a Mine Subsidence District.

The land is not bushfire prone land.

Heritage – Is affected by schedule 5 of Parramatta City Centre Local Environmental Plan 2007.

Development consent is required of any proposed development, including demolition, alterations, additions, erection of a new building and subdivision on the subject site pursuant to clause 35 of Parramatta City Centre Local Environmental Plan 2007.

The Director General with responsibility for the Threatened Species Conservation Act 1995 has not advised Council that the land includes or comprises a critical habitat.

The Parramatta City Centre Local Environmental Plan 2007 clause 25 provides for acquisition of certain lands by public authorities.

The land is not affected by Section 38 or 39 of the Coastal Protection Act 1979.

Has an order been made under Part 4D of the Coastal Protection Act 1979 in relation to emergency coastal protection works (within the meaning of the Act) on the land (or on public land adjacent to that land)? **NO**

Has Council been notified under section 55x of the Coastal Protection Act 1979 that emergency coastal protection works (within the meaning of the Act) have been placed on the land (or on public land adjacent to that land)? **NO**

Has the owner (or any previous owner) of the land been consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act)?

Council has not adopted a policy to restrict the development of the land by reason of the likelihood of projected sea level rise (coastal protection), tidal inundation, subsidence or any other risk.

Site Compatibility Certificate

At the date of issue of this certificate Council is not aware of any

- a. Site compatibility certificate (affordable rental housing),
- b. Site compatibility certificate (infrastructure),
- c. Site compatibility certificate (seniors housing)

in respect to the land issued pursuant to the Environmental Planning & Assessment Amendment (Site Compatibility Certificates) Regulation 2009 (NSW).

The land is **not affected** by any of the matters contained in Clause 59(2) as amended in the Contaminated Land Management Act 1997 – as listed

- a. that the land to which the certificate relates is significantly contaminated land
- b. that the land to which the certificate relates is subject to a management order
- c. that the land to which the certificate relates is the subject of an approved voluntary management proposal
- d. that the land to which the certificate relates is subject to an ongoing maintenance order

e. that the land to which the certificate relates is the subject of a site audit statement

Council has adopted a policy covering the entire City of Parramatta to restrict development of any land by reason of the likelihood of flooding.

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

This does not constitute a Complying Development Certificate under section 85 of the EP&A Act

This information only addresses matters raised in **Clauses 1.17A (c) and (d) and 1.19** of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

It is your responsibility to ensure that you comply with the general requirements of the State Environmental Planning Policy (Exempt and Complying Codes) 2008. Failure to comply with these provisions may mean that a Complying Development Certificate issued under the provisions of State Environmental Planning Policy (Exempt and Complying Codes) 2008 is invalid.

General Housing Code

Complying Development pursuant to the General Housing Code **may not** be carried out on the land. The land is affected by specific land exemptions under **Clause 1.17A.**

 land comprises, or contains an item of environmental heritage (that is listed on the State Heritage Register or that is subject to an interim heritage order under the *Heritage Act 1977* or that is identified as an item of environmental heritage in an environmental planning instrument),

Housing Alterations Code

Complying Development pursuant to the Housing Alterations Code **may not** be carried out on the land. The land is affected by specific land exemptions under **Clause 1.17A.**

 land comprises, or contains an item of environmental heritage (that is listed on the State Heritage Register or that is subject to an interim heritage order under the *Heritage Act 1977* or that is identified as an item of environmental heritage in an environmental planning instrument),

General Development Code

Complying Development pursuant to the General Development Code **may not** be carried out on the land. The land is affected by specific land exemptions under **Clause 1.17A.**

 land comprises, or contains an item of environmental heritage (that is listed on the State Heritage Register or that is subject to an interim heritage order under the *Heritage Act 1977* or that is identified as an item of environmental heritage in an environmental planning instrument),

Demolition Code

Complying Development pursuant to the Demolition Code **may not** be carried out on the land. The land is affected by specific land exemptions under **Clause 1.17A**

 land comprises, or contains an item of environmental heritage (that is listed on the State Heritage Register or that is subject to an interim heritage order under the *Heritage Act 1977* or that is identified as an item of environmental heritage in an environmental planning instrument),

General Commercial and Industrial Code

Complying Development pursuant to the General Commercial and Industrial Code **may not** be carried out on the land. The land is affected by specific land exemptions under **Clause 1.17A**

 land comprises, or contains an item of environmental heritage (that is listed on the State Heritage Register or that is subject to an interim heritage order under the *Heritage Act 1977* or that is identified as an item of environmental heritage in an environmental planning instrument),

SPECIAL NOTES

Acid Sulphate Soils Class 4 – development consent is required for the carrying out of works described in the Table clause 33B of the Parramatta City Centre Local Environmental Plan 2007.

Applicants for Sections 149 Certificates are advised that Council does not hold sufficient information to fully detail the effect of any encumbrances on the title of the subject land. The information available to Council is provided on the basis that neither Council nor its servants hold out advice or warrant to you in any way its accuracy, nor shall Council or its servants, be liable for any negligence in the preparation of that information. Further information should be sought from relevant Statutory Departments.

SECTION C

The following additional information is issued under Section 149(5)

Pursuant to S149(5) the Council supplies information as set out below on the basis that the Council takes no responsibility for the accuracy of the information. The information if material should be independently checked by the applicant.

Aboriginal Heritage – High Sensitivity – potential to contain items of Aboriginal heritage. Contact Council's Customer Service/Duty Planner (02) 9806 5050 for more information.

This site is coloured on the Key Sites Map and refers to Clause 22B Design Excellence of the Parramatta City Centre Local Environmental Plan 2007.

The land is affected by a 100 year Average Recurrence Interval flood as indicated by Council's current flooding information. As such Council is required to take that into account when determining any development application made in respect of the land.

Further information is available at the Design Services Section within Council's Technical Services Unit.

Additional advice should be also sought from an appropriately qualified person as to the extents and potential hazards associated with the likely flooding of the land. The names of qualified persons maybe obtained from the Institution of Engineers Australia.

ANNEXURE "B1"

issued pursuant to Section 149 of the Environmental Planning and Assessment Act 1979. The following information is supplied in respect of Section 149 and embodies the requirements of Department of Planning Circular No. A2 dated 17 March 1989 and the Ministerial Notification dated 15 December 1986.

STATE ENVIRONMENTAL PLANNING POLICY NO.6 - Number of Storeys in a Building

STATE ENVIRONMENTAL PLANNING POLICY NO.10 - Retention of Low Cost Rental Accommodation

STATE ENVIRONMENTAL PLANNING POLICY NO.19 - Bushland in Urban Areas

STATE ENVIRONMENTAL PLANNING POLICY NO.21 - Caravan Parks

STATE ENVIRONMENTAL PLANNING POLICY NO.22 - Shops and Commercial Premises

STATE ENVIRONMENTAL PLANNING POLICY NO.32 - Urban Consolidation (Redevelopment of Urban Land)

STATE ENVIRONMENTAL PLANNING POLICY NO.33 - Hazardous and Offensive Development

STATE ENVIRONMENTAL PLANNING POLICY NO.55 - Remediation of Land

STATE ENVIRONMENTAL PLANNING POLICY NO.64 - Advertising and Signage

- STATE ENVIRONMENTAL PLANNING POLICY NO.65 Design Quality of Residential Flat Development.
- STATE ENVIRONMENTAL PLANNING POLICY NO.70 Affordable Housing (Revised Schemes)
- STATE ENVIRONMENTAL PLANNING POLICY (Housing for Seniors or People with a Disability) 2004

STATE ENVIRONMENTAL PLANNING POLICY - (Building Sustainability Index: BASIX) 2004

STATE ENVIRONMENTAL PLANNING POLICY -- (Major Projects) 2005

STATE ENVIRONMENTAL PLANNING POLICY – (Mining, Petroleum Production and Extractive Industries) 2007

STATE ENVIRONMENTAL PLANNING POLICY (Temporary Structures and Places of Public Entertainment) 2007

STATE ENVIRONMENTAL PLANNING POLICY (Infrastructure) 2007

STATE ENVIRONMENTAL PLANNING POLICY (Exempt and Complying Development Codes) 2008

STATE ENVIRONMENTAL PLANNING POLICY (Affordable Rental Housing) 2009

STATE ENVIRONMENTAL PLANNING POLICY (Urban Renewal) 2010

SYDNEY REGIONAL ENVIRONMENTAL PLAN NO.9 (No.2) - Extractive Industries

SYDNEY REGIONAL ENVIRONMENTAL PLAN NO.18 - Public Transport Corridors

SYDNEY REGIONAL ENVIRONMENTAL PLAN NO.24 - Homebush Bay Area

SYDNEY REGIONAL ENVIRONMENTAL PLAN – (Sydney Harbour Catchment) 2005

N.B. All enquiries as to the application of Draft, State and Regional Environmental Planning Policies should be directed to The Department of Infrastructure Planning and Natural Resources – 23-33 Bridge Street Sydney NSW 2000.

Dr Robert Lang Chief Executive Officer

mallona

per /

dated 10 October 2011

Appendix G

QA/QC Documentation

QA/QC PROCEDURES AND RESULTS

Q1 - FIELD QUALITY ASSURANCE AND QUALITY CONTROL

The field QC procedures for sampling as prescribed in Douglas Partners Field Procedures Manual were followed at all times during the assessment.

Sample Collection

Sample collection procedures and dispatch for soil and groundwater are reported in Section 9, Quality Assurance and Quality Control.

Logs

Logs for each sampling location were recorded in the field. The individual samples were recorded on the field logs along with location, depth, initials of sampler, duplicate locations and duplicate type. Borehole Logs are presented in Appendix H.

Chain of Custody

Analysis to be performed on each sample and the dispatch courier were recorded on the COCs and accompanied samples to the analytical laboratory. Signed copies of COCs are presented in Appendix I, following the laboratory reports.

Sample Splitting Techniques

Replicate samples were collected in the field as a measure of accuracy, precision and repeatability of the results. Field replicate samples for soil were collected from the same location and an identical depth to the primary sample. Equal portions of the primary sample were placed into the sampling jars and sealed. The sample was not homogenised in a bowl and then split to prevent the loss of volatiles from the soil. Replicate samples were labelled with a DP identification number, recorded on DP bore logs, so as to conceal their relationship to their primary sample from the analysing laboratory.

Replicate Frequency

Field sampling comprised replicate sampling, at a rate of approximately one replicate sample for every twenty original samples for intra and inter-laboratory analysis.

Trip Spikes

According to the NSW EPA *Guidelines for Consultants Reporting on Contaminated Sites* (1997), laboratory prepared trip spikes are to be taken into the field, subjected to the same preservation methods as the field samples, then analysed, for the purposes of determining the losses in volatile organics incurred prior to reaching the laboratory.

The laboratory prepared two soil trip spikes which were preserved in the standard manner and taken into the field unopened. The volatile organic recovery rates are shown below. At this stage, the laboratory has no standard acceptance limits in recovery rates as results from in-house laboratory controls often vary. Results in Table Q1 indicate that the percentage losses for BTEX during the trips were minimal and therefore appropriate preservation techniques were employed.

Table Q1: Trip Spike Results

Sample ID	Motrix	Recovery (%)							
Sample ID	Watrix	Benzene	Toluene	Ethyl Benzene	m+p xylene	o-xylene			
TS1-22/09/2011	Soil	104	104	107	107	107			
TS2-23/09/2011	Soil	105	105	102	102	102			

Trip Blanks

Laboratory prepared soil trip blanks were taken out to the field unopened on both days of fieldwork, subjected to the same preservation methods as the field samples, then analysed for the purposes of determining the transfer of contaminants into the blank samples incurred prior to reaching the laboratory. The result of the laboratory analysis for the trip blanks is shown in Table Q2.

		TPH			BTEX		
Sample ID	Matrix	C ₆ -C ₉	Benzene	Toluene	Ethyl Benzene	m+p xylene	o-xylene
TB1- 22/09/2011	Soil	<25	<0.2	<0.5	<1.0	<2.0	<1.0
TB2- 23/09/2011	Soil	<25	<0.5	<0.5	<1.0	<2.0	<1.0

Table Q2: Trip Blank Results

Levels of analytes were all below detection limits indicating that cross contamination had not occurred during the course of the round trip from the site to the laboratory.

Field Instrument Calibration

The groundwater parameters were measured with a 90FL-T water quality meter. The water quality meter was calibrated prior to use in the field with pH buffer solutions of 4 and 10.

All soil samples were screened for the presence of Total Photo-Ionisable Compounds (TOPIC) using a calibrated Photo-Ionisation Detector (PID). The PID was calibrated by Douglas Partners prior to fieldwork with Isobutylene gas.

Relative Percentage Difference

Intra- and inter-laboratory replicates were conducted as an internal check of the reproductively within the primary laboratory (Envirolab Pty Ltd) and the inter-laboratory, SGS Laboratories, as a measure of consistency of sampling techniques. Soil samples and their replicate pairs were analysed by Envirolab for heavy metals, TPH, BTEX and PAH. One replicate pair was analysed by SGS Laboratories as a measure of precision between laboratories. A groundwater sample and its replicate pair were additionally tested for heavy metals, TPH and BTEX. A measure of the consistency of results for field samples is derived by the calculation of relative percentage differences (RPDs) for duplicate samples. Laboratory reports state that a RPD of \pm 30-50% is considered acceptable. Laboratory results also note that the RPDs should be ignored where results are less than 5 times the PQL. Comparative laboratory results of original and replicate samples are shown below in Tables Q3 – Q6.

Sample ID		Heavy Metals						РАН		
	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	B(a)P	РАН
MW02/0.5-0.6	<4	<0.5	3	3	4	<0.1	3	5	0.08	0.68
Dup02	<4	<0.5	4	3	11	<0.1	2	9	< 0.05	<pql< td=""></pql<>
PQL	4	0.5	1	1	1	0.1	1	1	0.05	0.1
Difference	0	0	1	0	7	0	1	4	NA	NA
RPD (%)	0	0	29	0	93	0	40	57	NA	NA

Table Q3: Comparative Results of Replicate Soil Sample Analysis - Intra-laboratory Results

Sample ID	Total Hydroca	Petroleum arbons (TPH)	Мо	Monocyclic Aromatic Hydrocarbons (BTEX)					
	C6-C9	C ₁₀ -C ₃₆	Benzene	Toluene	Ethylbenzene	Total Xylene			
MW02/0.5-0.6	<25	<250	<0.2	<0.5	<1.0	<2.0			
Dup02	<25	<250	<0.2	<0.5	<1.0	<2.0			
PQL	25	250	0.5 / 0.2	0.5	1 / 0.5	3/1/0.5			
Difference	0	0	0	0	0	0			
RPD (%)	0	0	0	0	0	0			

Table Q4: Comparative Results of Replicate Soil Sample Analysis - Inter-laboratory Results

Sample ID		Heavy Metals								Н
	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	B(a)P	PAH
BH08/0.1-0.2	<4.0	<0.5	140	32	6	<0.1	120	62	<0.05	0.2
Dup04	<3.0	0.6	120	29	6	<0.05	110	78	<0.1	1.1
PQL	4	0.5	1	1	1	0.1	1	1	0.05	0.1
Difference	0	NA	20	3	0	NA	10	16	NA	0.9
RPD (%)	0	NA	15	10	0	NA	8.7	22.9	NA	138

Sample ID	Total Petroleum Hydrocarbons (TPH)		Monocyclic Aromatic Hydrocarbons (BTEX)					
	C6-C9	C ₁₀ -C ₃₆	Benzene	Toluene	Ethylbenzene	Total Xylene		
BH08/0.1-0.2	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td></pql<>	<0.2	<0.5	<1.0	<2.0		
Dup04	<20	<120	<0.1	<0.1	<0.1	<0.2		
PQL	25	250	0.5 / 0.2	0.5	1 / 0.5	3 / 1 / 0.5		
Difference	NA	NA	NA	NA	NA	NA		
RPD (%)	NA	NA	NA	NA	NA	NA		

Table Q5: Comparative Results of Replicate Soil Sample Analysis - Intra-laboratory Results

Sample ID		Heavy Metals							РАН	
	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	B(a)P	РАН
BH01/1.0-1.1	<4.0	<0.5	8	6	9	<0.1	4	12	< 0.05	<pql< td=""></pql<>
Dup08	<4.0	<0.5	8	6	9	<0.1	4	11	< 0.05	<pql< td=""></pql<>
PQL	4	0.5	1	1	1	0.1	1	1	0.05	0.1
Difference	0	0	0	0	0	0	0	1	0	0
RPD (%)	0	0	0	0	0	0	0	8.7	0	0

Sample ID	Total Hydr	Petroleum ocarbons (TPH)	Monocyclic Aromatic Hydrocarbons (BTEX)					
	C6-C9	C ₁₀ -C ₃₆	Benzene	Toluene	Ethylbenzene	Total Xylene		
BH01/1.0-1.1	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td></pql<>	<0.2	<0.5	<1.0	<2.0		
Dup08	<25	<pql< td=""><td><0.2</td><td><0.5</td><td><1.0</td><td><2.0</td></pql<>	<0.2	<0.5	<1.0	<2.0		
PQL	25	250	0.5 / 0.2	0.5	1 / 0.5	3/1/0.5		
Difference	0	0	0	0	0	0		
RPD (%)	0	0	0	0	0	0		

Sample ID				Heavy Meta	s			
	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
MW02	<1	<0.1	1	3	<1	<0.1	1	9
Dup01	<1	<0.1	<1	<1	<1	<0.1	<1	4
PQL	4	0.5	1	1	1	0.1	1	1
Difference	0	0	NA	NA	0	0	NA	5
RPD (%)	0	0	NA	NA	0	0	NA	76.9

Table Q6: Comparative Results of Replicate Groundwater Sample Analysis – Intra-laboratory Results Intra-laboratory

Sample ID	Total Hydr (Petroleum ocarbons (TPH)	Monocyclic Aromatic Hydrocarbons (BTEX)					
	C6-C9	C ₁₀ -C ₃₆	Benzene	Toluene	Ethylbenzene	Total Xylene		
MW02	<10	<250	<1	<1	<1	<2		
Dup01	<10	<250	<1	<1	<1	<2		
PQL	25	250	0.5 / 0.2	0.5	1 / 0.5	3 / 1 / 0.5		
Difference	0	0	0	0	0	0		
RPD (%)	0	0	0	0	0	0		

The calculated RPD values were mostly within the acceptable range for the samples and their replicates, with the exception of the following:

- MW02/0.5 0.6 and Dup07 (soil) for lead (93%), nickel (40%), zinc (57%);
- BH08/0.5 0.6 and Dup04 (soil) for total PAH (138%); and
- MW02 and Dup01 (water) for zinc (76.9%).

Based on the RPDs it is considered in general the numerical difference in the concentrations is not large and therefore the actual difference is not significant. The variation in numerical differences may also be due to the heterogenous nature of the fill material. It is therefore considered that the results indicate an acceptable consistency between the samples and their replicates, and indicate that suitable field sampling methodology was adopted and laboratory precision was achieved.

For the zinc in groundwater that was over the general acceptance range, the numerical difference in the concentrations is not considered large and therefore the actual difference is not significant, although the RPD is above 50%. It is therefore considered that the results indicate an acceptable consistency between the sample and its replicate and indicates that suitable field sampling methodology was adopted and laboratory precision was achieved.

Q2 - LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

The following QA/QC procedures were conducted by the laboratories.

Reagent Blank

This sample is prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. The laboratory results for reagent blanks for soil and groundwater analyses indicated concentrations of all analytes to be below laboratory detection limits. These results are included in the laboratory reports in Appendix I. The laboratory results for blanks indicated concentrations of all analytes to be below laboratory detection limits and therefore the results were considered to be acceptable.

Spike Recovery

This is a sample replicate prepared by adding a known amount of analyte prior to analysis, and then treated exactly the same as all other samples. The recovery result indicates the proportion of the known concentration of the analyte that is detected during analysis. These results are included in the laboratory reports in Appendix I. The spike recovery rates are compared with limits as specified in Envirolab Services Quality Control System, and any exceedances are highlighted in the reports.

The Envirolab report indicated that the percentage recovery of acid extractable metals in soil was not possible to report due to the high concentration of elements in the sample. However, an acceptable recovery was obtained for the LCS.

All other surrogate recoveries were within the laboratory limits, thereby indicating acceptable analyte recovery rates.

Surrogate Recovery

This sample is prepared by adding a known amount of surrogate, which behaves similarly to the analyte, prior to analysis to each sample. The recovery result indicates the proportion of the known concentration of the surrogate that is detected during analysis. The surrogate recovery rates are compared with limits as specified in Envirolab Services and any exceedances are highlighted in the reports.

All surrogate recoveries were within the laboratory limits, thereby indicating acceptable analyte recovery rates.

Duplicates

These are additional portions of a sample which are analysed in exactly the same manner as all other samples. The duplicate sample results are included in the laboratory results in Appendix I. The laboratory report indicates that the duplicate results were within the laboratory acceptance criteria with the exception of one RPD result for PAH of 67% in report 62422. However, overall the duplicate results were within the acceptance criteria.

In overall terms, therefore, the data quality objectives have been attained and the quality of the investigation data is considered acceptable.

Appendix H

Borehole Logs

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
$\overline{\nabla}$	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U_{50} Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) рр
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

21

- vertical v
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/--

Sampling & In Situ Testing

BORE No: BH101 **PROJECT No: 72628** DATE: 23/9/2011 SHEET 1 OF 1

CLIENT: Parramatta City Council **PROJECT:** Phase 1 & 2 Contamination Assessment LOCATION: Lennox Bridge Carpark

			Description	ici	Sampling & In Situ Testing				L.	Well	
	님	Depth	of	-og	ē	ц,	ple	Deputto 9	/ate	Constructio	n
		(11)	Strata	5	Typ	Dep	am	Comments	5	Details	
ł	-		ROADBASE	h. 0		_	0				
		0.2	FILLING dark grov aith and filling with readhage grovel		E	0.2		PID<1			
	ł	0.4	\Box (20mm-40mm)	\mathbb{K}		0.3					
	ł	0.5	FILLING - orange and dark brown, silty sand filling		_E	0.6		PID<1			
	ł		SILTY SAND, orange brown, silty sand, humid								
	F	- 1	- becoming more orange with depth	: : : :	E	1.0 ,	DUP08] 3 PID<1		-1	
	F					1.1					
	F									-	
	F										
	F			· · · ·						-	
	F	-2		$\left[\cdot \left[\cdot \right] \cdot \right] \cdot$		2.0		PID<1		-2	
	F					2.1				-	
	F									-	
	F									-	
	F									-	
	F	-3			F	3.0		PID<1		-3	
	E	3.1	Bore discontinued at 3.1m			-3.1					
	ŀ										
	ł										
	ł	-4								-4	
	ł									_	
	ł										
	ł										
	t	- 5								-5	
	ł									-	
	ł									-	
	ł									-	
	E									-	
	t	- 6								-6	
	ł										
	Ē									-	
										-	
	ł									-	
		-7								-7	
	ļ									-	
	þ									-	
	þ									-	
	ļ									-	
	ļ	- 8								-8	
	ļ										
	ļ									F	
	ļ									+	
	ļ									-	
	ļ	-9								-9	
1	H		1					1	1	F	

RIG: Dando Terrier

TYPE OF BORING: Pushtube

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS: *DUP08 sample BH101/1.0-1.1m

SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Phot LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sam E Environmental Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U_x W Core drilling Disturbed sample Environmental sample ₽

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH102 PROJECT No: 72628 DATE: 23/9/2011 SHEET 1 OF 1

								11. 507			
Γ			Description	С		San	npling a	& In Situ Testing		Well	
	J De	epth	of	aph og	е	ţ	ele	Describe 0	ater/	Constructio	n
	- (m)	Strata	С Ш	Typ	Depi	amp	Comments	∣≥	Details	
$\left \right $	-	0 1		<u>i.</u>		01	S S				
	Ļ	0.3	FILLING - dark grey, silty sand filling with roadbase gravel	\bigotimes	_E	0.2		PID<1		-	
	Ę	0.5	$\langle (5mm-30mm) \rangle$	\bowtie	E	0.4		PID<1		-	
	F		FILLING - light brown, silty sand filling with trace roadbase	$\left[\cdot \right] \cdot \left[\cdot \right] \cdot \left[\cdot \right]$		0.0				-	
	F.		gravel (5mm-20mm)	$ \cdot \cdot \cdot \cdot $							
	-1		SILTY SAND - orange brown, silty sand with trace ash	$\left \cdot \right \cdot \left \cdot \right $	_E	1.0 1.1		PID<1		[
	E									[
	E									_	
	Ł									-	
	-2					2.0				-2	
	Ę				_E	2.1		PID<1		-	
	F									-	
	F									-	
	F									-	
	-3	2.4				3.0		PID<1		-3	
	E	3.1	Bore discontinued at 3.1m			-3.1-					
	Ł									-	
	Ł									-	
	Ę									-	
	-4									-4	
	Ę									-	
	F									-	
	F										
	[5	
	Ľ										
	Ļ									-	
	Ę									-	
	Ę									-	
	-6									-6	
	F									-	
	F									-	
	E									[
	Ł									-	
	-7									-7	
	Ę									-	
	Ę									-	
	Ę									-	
	F.										
	68									E o	
	E									[
	Ł									-	
	Ł									ţ	
	-9									-9	
	Ę									F F	
	F									Ę	
	F									F	
	F									F	
L	t									Ī	

RIG: Dando Terrier

CLIENT:

PROJECT:

Parramatta City Council

LOCATION: Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

TYPE OF BORING: Pushtube WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH103 PROJECT No: 72628 DATE: 22/9/2011 SHEET 1 OF 1

					DIF			n. 90 /	SHEET 1 OF 1		
			Description	<u>.</u>		Sam	npling a	& In Situ Testing		Well	
님	Dep	th	of	aphi -og	e	Ę	ole	Desults 9	/ater	Constructio	n
	(III)	'	Strata	5 U	Typ	Dep	Sam	Comments	5	Details	
F	-	0.1	ASPHALT		F	0.1		PID<1		-	
	-	0.3	\neg FILLING - dark grey, gravelly sand filling with some	\bigotimes		0.2				-	
	-	0.5		<u> </u>	_E_	0.5 0.6		PID<1		-	
	-		some gravel and roadbase with trace brick fragments							-	
	-1		$\sqrt{\text{SILTY SAND}}$ - orange brown, silty sand	! ! ! • • • •	_E_	1.0 1 1		PID<1		-1	
	-		՝ 1.0m: humid	: : : • • • •						-	
	-			$ \cdot \cdot \cdot $	_E_	1.5		PID<1		-	
	-				1.0				-	
	-2			[·i·i·i·	E_	2.0		PID<1		-2	
	-			<u>-i-i-i</u> -		2				-	
	-		2.5m: clavey with depth with trace ash	· · · ·						-	
	-									-	
	-3	3.0	Bore discontinued at 3.0m	· · · ·	E	2.9 		PID<1		- 3	
	-									-	
	-									-	
	-									-	
	-4									-4	
	-									-	
	-									-	
	-									-	
	-5									-5	
	-									-	
	-									-	
	-									-	
	-6									-6	
	-									-	
	-									-	
	-									-	
	-7									-7	
	-									-	
	-									-	
	-									-	
	-8									-8	
	-									-	
	-									- -	
	-									-	
	-9									9	
	-									-	
	-									-	
	-									-	
L	-									<u>t</u>	

RIG: Dando Terrier TYPE OF BORING: Pushtube

CLIENT:

PROJECT:

Parramatta City Council

LOCATION: Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 D Disturbed sample
 W
 Water sample (x mm dia.)
 PL

 D Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH104 PROJECT No: 72628 DATE: 22/9/2011 SHEET 1 OF 1

DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Description Well Graphic Water Depth Log Ъ of Construction Depth Type Sample Results & Comments (m) Details Strata .О. ROADBASE 02 0.2 0.3 PID<1 $\overline{\mathbf{X}}$ Ē FILLING - dark brown, sandy gravelly filling with some 0.4 \asphalt pieces (10mm-30mm) 0.5 0.6 PID<1 Е *DUP7 SILTY SAND - orange silty sand $\cdot |\cdot| \cdot$ 1.0 1.1 1 1.0 - 1 PID<1 E SILTY SAND - light yellow brown, silty sand $\cdot |\cdot| \cdot |$ (becoming lighter with depth) $\cdot |\cdot| \cdot |$ 1.5 PID<1 E $\cdot |\cdot| \cdot |$ 16 $\cdot |\cdot| \cdot |$ 2 2.0 2.1 -2 PID<1 $\cdot |\cdot| \cdot |$ E $\cdot |\cdot| \cdot |$ $\cdot |\cdot| \cdot |$ • | • | • | 3 3.0 Bore discontinued at 3.0m 4 -4 5 -5 6 -6 7 - 7 8 - 8 9 -9

RIG: Dando Terrier

CLIENT:

PROJECT:

LOCATION:

Parramatta City Council

Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

TYPE OF BORING: Pushtube WATER OBSERVATIONS: No free groundwater observed REMARKS: *DUP07 sample BH104/0.5-0.6m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH105 PROJECT No: 72628 DATE: 22/9/2011 SHEET 1 OF 1

DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Graphic Description Well Depth Log Water Ъ of Sample Construction Depth Type Results & Comments (m) Details Strata ASPHALT/ROADBASE 02 CONCRETE AA 04 0.4 0.5 Е PID<1 FILLING - dark brown, silty sand filling with some gravel pieces (20mm-40mm) and trace concrete (20mm) 1 1.0 - 1 PID<1 E 1.1 1.2 Ē sample of pottery only 1.2m: some asphalt pieces, trace pottery pieces (100mm) 1.5 PID<1 Ē 16 2.0 2.1 2 -2 PID<1 E 2.2 SILTY SAND - yellow silty sand, humid · | · | · | $\cdot |\cdot| \cdot |$ $\cdot |\cdot| \cdot |$ 3 3.0 3.1 -3 · | · | · | | PID<1 E $\cdot |\cdot| \cdot |$ • | • | • | $\cdot |\cdot| \cdot |$ -4 4.0 Bore discontinued at 4.0m 5 -5 6 -6 7 - 7 8 - 8

RIG: Dando Terrier TYPE OF BORING: Pushtube

- 9

CLIENT:

PROJECT:

LOCATION:

Parramatta City Council

Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

-9

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test 1s(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test 1s(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH106 PROJECT No: 72628 DATE: 22/9/2011 SHEET 1 OF 1

DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Graphic Description Well Log Water Depth Ъ of Construction Type Depth Sample Results & Comments (m) Details Strata .О. ROADBASE 02 0.2 PID<1 Е 0.2 0.3 0.4 FILLING - dark grey, silty sand filling with some roadbase 04 gravel and rocks (20mm-50mm), trace Е PID<1 0.5 0.6 0.7 ash/cinder/sandstone (10mm) 07 Е PID<1 FILLING - light grey, sandy silt filling with some clay 0.8 1.0 FILLING - yellow, sandy silt filling with some clay and 1 1.1 E PID<1 sandstone pieces (10mm-50mm) FILLING - dark brown, silty sand filling $\cdot |\cdot| \cdot |$ SILTY SAND - orange brown, silty sand with trace ash, $\cdot |\cdot| \cdot |$ humid $\cdot |\cdot| \cdot |$ 2 2.0 2.1 -2 PID<1 • | • | • | E $\cdot |\cdot| \cdot |$ $\cdot |\cdot| \cdot |$ · | · | · | 2.9 $\cdot |\cdot| \cdot |$ 3 -3 Е PID<1 ·3.2 3.2 Bore discontinued at 3.2m 4 -4 5 -5 6 -6 7 - 7 8 - 8 9 -9

RIG: Dando Terrier

CLIENT:

PROJECT:

LOCATION:

Parramatta City Council

Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

TYPE OF BORING: Pushtube WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test 1s(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test 1s(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard ard penetration test

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH107 PROJECT No: 72628 DATE: 22/9/2011 SHEET 1 OF 1

								n. 907		SHEET 1 OF 1		
			Description	<u>.</u>		Sampling & In Situ Testing				Well		
L L	Deptl	ן ר	of	aph.	e	ţ	ple	Poculte &	Vater	Construction		
	(111)		Strata	_ ق_	⊥ ⊐	Dep	Sam	Comments	>	Details		
T	C	.1	~ASPHALT/ROADBASE		E .	0.1		PID<1		-		
	C	.3	γ FILLING - dark grey, silty sand filling with asphalt gravel		, ;	0.2				-		
			FILLING - dark orange brown, silty sand filling with trace	′ 🔛	E_	0.5 0.6		PID<1				
		ŀ	ash		E	0.8		PID=31				
Ē	' 1	.1	γ pipe			1.0						
			- move hole due to refusal			15						
			SILTY SAND - orange brown, silty sand with trace ash, damp		E	1.6		PID<1		-		
	2			- · · ·		20				-2		
	-				<u> </u>	2.1		PID<1		-		
					·							
	3 3	.0				2.9 		PID<1		- 3		
			Bore discontinued at 3.0m							-		
										-		
Ē	4									-4		
										-		
-	5									-5		
										-		
										-		
-6	6									-6		
	_									-		
	7									-7		
										-		
										-		
	5									-		
	9									-9		
`												
										F I		
										ŀ		

RIG: Dando Terrier

CLIENT:

PROJECT:

Parramatta City Council

LOCATION: Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

TYPE OF BORING: Pushtube WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 D Disturbed sample
 W
 Water sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 D Disturbed sample
 V
 Water sample
 P
 Point coat axial test Is(50) (MPa)

 E
 Environmental sample
 V
 Water sample
 V
 Standard penetration test

SURFACE LEVEL: --EASTING: NORTHING:

BORE No: BH108 **PROJECT No: 72628** DATE: 22/9/2011 SHEET 1 OF 1

Well

Construction

Details

PROJECT: Phase 1 & 2 Contamination Assessment LOCATION: Lennox Bridge Carpark DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Graphic Description Water Depth Log Ъ of Sample Depth Type Results & Comments (m) Strata 0.1 0.2 0.3 0.4 0.1 - ROADBASE/ASPHALT *DUP04 PID<1 E 0.3 ► FILLING - dark grey, gravelly sand filling with asphalt PID<1 E pieces (30mm-80mm) FILLING - orange brown, silty sand filling with trace $\cdot |\cdot| \cdot |$ gravel/asphalt pieces 1.0 1.1 1 $\cdot |\cdot| \cdot |$ - 1 SILTY SAND - orange brown, silty sand Е PID<1 $\cdot |\cdot| \cdot |$ $\cdot |\cdot| \cdot |$ 1.5 PID<1 E 1.6 $\cdot |\cdot| \cdot |$ 2.0 2.1 2 -2 PID<1 Ē $\cdot |\cdot| \cdot$

	2.5							-	
-	2.6	 SILTY SAND - dark brown, silty sand 						-	
Ę		SILTY SAND - yellow brown, silty sand		2.9		PID<1			
-3	3.0	Bore discontinued at 3.0m	╘╘═	-3.0				- 3	
E								E	
-								-	
-								-	
-4								-4	
-								-	
E									
-								-	
-								-	
-5								-5	
-								-	
-								-	
-6								-6	
E									
-								-	
-								-	
-								-	
Ē								Ē	
-								-	
-								-	
F								-	
-8								-8	
-								-	
-								-	
Ē								ŧ	
La									
-								Ĭ	
E E								ţ	
-								ŧ	
Ē								E	
RIG: D	and	o Terrier DRILLER: Tightsite	LOG	GED	KS	CASIN	G : U	ncased	
TYPE C	OF E	SORING: Pushtube							

WATER OBSERVATIONS: No free groundwater observed REMARKS: *DUP04 sample BH108/0.1-0.2m

CLIENT:

Parramatta City Council

SAMPLING & IN SITU TESTING LEGEND

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: --EASTING: NORTHING: BORE No: BH109 PROJECT No: 72628 DATE: 23/9/2011 SHEET 1 OF 1

					DIF			n. 90 /		SHEET I OF I	
Γ			Description	2		Sam	npling &	& In Situ Testing		Well	
R	De	epth	of	p B	ē	ŧ	ple	Deculto 9	/ater	Constructio	n
		11)	Strata	5	Typ	Dep	Sam	Comments	5	Details	
F	-	0.1	ROADBASE	. .	-	0.1				-	
	E	0.3	FILLING - dark grey, silty sand filling with roadbase pieces	\bigotimes	E	0.3		PIDST		-	
	F	0.4	(20mm-50mm)	·i·i	_E_	0.5 0.6		PID<1		-	
	Ē		pieces (20-30mm)	۰ŀŀ						-	
	-1		SILTY SAND - dark orange, silty sand, humid	·!·!	_E_	1.0 1 1		PID<1		-1	
	Ē			·!·!·							
	-		- becoming lighter and denser with depth							-	
	F			·!·!·						-	
	-2				E	2.0		PID<1		-2	
	F					2.1				-	
	E			· [·] ·							
	Ļ			: : . . .						-	
	-3	3.0	Bore discontinued at 3 0m		_E_	2.9 		PID<1		3	
	ļ.									-	
	Ē										
	E									-	
	-4									-4	
	E									-	
	F									-	
	Ē									-	
	-5									- -5	
	Ē									-	
	Ę									-	
	Ē										
	-6									-6	
	F									-	
	Ē									-	
	F									-	
	-7									-7	
	-									-	
	Ē									-	
	-									-	
	Ē.										
	ǰ										
	F										
	E										
	ŧ										
	-9 -									-9	
	ŧ										
	Ē									Ę	
	F										
L	1		1						1		

RIG: Dando Terrier

CLIENT:

PROJECT:

Parramatta City Council

LOCATION: Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

TYPE OF BORING: Pushtube WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux tube sample (x mm dia.)
 PL(D) Point load diametal test Is(50) (MPa)

 D C Core drilling
 W
 Water sample (x mm dia.)
 PL
 PD
 Point coad diametal test Is(50) (MPa)

 D Disturbed sample
 V
 Water sample
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING:

BORE No: BH110 **PROJECT No: 72628** DATE: 23/9/2011

DIP/AZIMUTH: 90°/--SHEET 1 OF 1 Sampling & In Situ Testing Description Well Graphic Log Water Depth Ъ Construction of Type Depth Sample Results & Comments (m) Details Strata CONCRETE 02 0.3 0.4 FILLING - dark grey brown, silty sandy gravel filling with E some asphalt pieces (10mm-30mm), trace brick (30mm) 0.5 0.6 Е and cinder 0.8 FILLING - clayey sand filling with trace ironstone, 1 1.0 1 sandstone pieces (20mm), ash and cinder Е 1.1 1.2 FILLING - light yellow, silty sand filling 1.6m: ash, cinder burnout with shell fragments 1.7 1.7 E FILLING - pink silty sand filling with shale pieces 18 (10mm-30mm) -2 2.0 -2 1.9m: burnt out area - ash, cinder with hardened (heat 2.2 affected) orange clay SILTY CLAY - brown, silty clay with trace rootlets, ash, 2.5 F 26 hardened orange clay 1.1. SANDSTONE - yellow sandstone 3 3 SILTY SAND - brown silty sand, damp 3.1 F 3.2 2.7m: saturated 3.2 Bore discontinued at 3.2m 4 -4 5 -5 6 -6 7 - 7

RIG: Dando Terrier

8

9

DRILLER: Tightsite

LOGGED: KS

CASING: Uncased

- 8

-9

TYPE OF BORING: Pushtube WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) A Auger sample B Bulk sample BLK Block sample G P U W PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) Water sample Water seep Water level Core drilling Disturbed sample Environmental sample Pocket penetrometer (kPa) Standard penetration test Shear vane (kPa) CDF pp S V ₽

PROJECT:

LOCATION:

CLIENT: Parramatta City Council Phase 1 & 2 Contamination Assessment Lennox Bridge Carpark

SURFACE LEVEL: 6.641 AHD EASTING: NORTHING:

BORE No: MW01 PROJECT No: 72628 DATE: 19/9/2011

				DIF	'/AZI	MUTH	H: 90°/		SHEET 1 OF 1	
		Description	<u>io</u>		San	npling 8	& In Situ Testing	_	Well	
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Constructior Details	ı
	0.	ASPHALT/CONCRETE	\sim	Е	0.1		PID<1		Concrete	
	0.4	FILLING - grey, silt filling with some gravel and concrete fragments (20mm-30mm) FILLING - dark brown, sand filling with some concrete pieces (30mm-50mm) trace light grey sand brick		E	0.5 0.6		PID<1		Backfill -	
	-1 -1 	concrete (100mm-200mm) and ash	\bigotimes	E	1.0 1.2	*DUP01	PID<1		·1	
Ē	. 1.0	FILLING - orange, silty sand filling, humid	\times	_E_	1.5		PID<1		Bentonite -	-88
	-2	FILLING - orange, silty sand filling with some peat and trace cinder, damp	\bigotimes	_E	2.0 2.1		PID<1		-2	2000000 2000000
-4	-3	5 SAND - dark brown, medium grained sand with trace sandstone pieces (400mm) and trace ash (possible filling)	××>	_E_	2.5 2.6		PID<1		Backfilled with	000000
3	3.2	SANDY CLAY - olive green, sandy clay		<u> </u>	3.1		PID<1			0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2	-4	- moist at 4.0m			4.0 4.1		PID<1		 4 Machine slotted — PVC screen 	00000000000000000000000000000000000000
		· · · · · · · · · · · · · · · · · · ·	././.							
3	-5 5.1	Bore discontinued at 5.0m							 <u>5</u> End cap - -6 -7 -8 -9 	
RIC	G: Sco	ut DRILLER: Ground Test		LOC	GED	: KS	CASING	:Un	cased	

TYPE OF BORING: Solid flight auger WATER OBSERVATIONS: Moist at 4.0m REMARKS: *DUP01 sample MW01/1.0-1.2m

SAMPLING & IN SITU TESTING LEGEND
 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sam E Environmental LING & IN SITU TESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample P Water seep ¥ Water level Core drilling Disturbed sample Environmental sample

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Phase 1 & 2 Contamination Assessment LOCATION: Lennox Bridge Carpark

Parramatta City Council

SURFACE LEVEL: 8.504 AHD EASTING: NORTHING:

BORE No: MW02 **PROJECT No: 72628** DATE: 19/9/2011

Douglas Partners Geotechnics | Environment | Groundwater

				DIF	7/AZI	MUTH	1: 90°/	;	SHEET 1 OF 1	
\prod		Description	ic		San	npling &	In Situ Testing	_	Well	
R	Depth (m)	of	raph Log	be	pth	nple	Results &	Wate	Constructio	n
		Strata	U	Ty	_0.0_	San	Comments		Details	
<u>}</u>	0.1 0.2	GRASS & SANDY TOPSOIL	KX.	_E_	0.1		PID<1		Gatic Cover Concrete	
Ē		FILLING - brown and orange, silty sand filling with trace gravel (concrete, roadbase) (200mm-500mm)			0.5			Ē		
Ē		SILTY SAND - orange silty sand	·!·!·!·	_E_	0.5	*DUP02	PID<1			
ŧŧ	.1								-1	
<u> </u>										
			 • • • •		15				Pookfill	
<u> </u>		1.5m: humid	: : : : - - - -	E	1.6		PID<1		Dackin	
	2			2.0				-2	
ŧŧ			[·[·[·]·	<u>E</u>	2.1		FID~1			
-0-					2.5		PID<1			
ĒĒ			• • • • : : : :	<u> </u>	2.6					
ļ	-3			F	3.0		PID<1		-3	
			: : : : • • • •		3.1				Bentonite -	-99
-0-	3.5	SILTY SAND - light grey silty sand with some clay								20
<u>}</u>	3.7	SILTY SAND - yellow silty sand							Backfilled with -	2001
	4		! ! ! ! • • • •	E	4.0		PID<1		gravel 4	20°C
ŧŧ			$\left \cdot \right \cdot \left \cdot \right \cdot$		7.1					
-4	4.5	SILTY SAND - orange silty sand								
ĒĒ										
<u> </u>	5	5.0m: damp	$\left \cdot \right \cdot \left \cdot \right \cdot \left \cdot \right $	_E_	5.0 5.1		PID<1		-5	00 00 00 00 00 00
			l-i-i-i-							
			[·i·i·i						Machine slotted – PVC screen	
<u> </u>										001
ĒĒ	- 6		• • • • : : : :						-6	010
<u>}</u>										
			! ! ! ! • • • •							
ĒĒ	7 70		$ \cdot \cdot \cdot \cdot$						- End cap -	
}	1 1.0	Bore discontinued at 7.0m								
[[
ŧŧ										
	8								8	
ĒĒ										
ĘĘ	9								9	
ļ										
Ę										
Ę										
RIC	Scou	It DRILLER: Ground Test		LOC	GGED	: KS	CASIN	G: Un	cased	

TYPE OF BORING: Solid flight auger WATER OBSERVATIONS: Damp at 5.0m

CLIENT:

PROJECT:

LOCATION:

Parramatta City Council

Lennox Bridge Carpark

Phase 1 & 2 Contamination Assessment

SURFACE LEVEL: 8.828 AHD EASTING: NORTHING:

BORE No: MW03 **PROJECT No: 72628** DATE: 20/9/2011

					DIF	7/AZI	MUT	H: 90°/		SHEET 1 OF 1
			Description	.ic	Sampling & In Situ Testing		_	Well		
RL	Dep (m	oth 1)	of Strata	Graph Log	Type	SJepth	Sample	Results & Comments	Wate	Construction Details
F	-	0.1	ROADBASE	i N	E_	0.1		PID<1		Gatic Cover
Ē	-	0.2	FILLING - dark grey, sandy clay filling with some roadbase	\bigotimes	X					
Ē	-	0.5	FILLING - red brown, silty sand filling with trace roadbase		E	0.5 0.6		PID<1		
-00	-1 1		SILTY SAND - red brown, silty sand, humid			1.0 1.1	DUP03	PID<1		-1 Backfill
	-			· · · · · · · · ·	E	1.5 1.6		PID<1		
-	-2				_E_	2.0 2.1		PID<1		-2
9	-	2.8								Bentonite
-	-3		SILTY SAND - brown yellow, silty sand	$ \begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\$	 	3.0 3.1		PID<1		Backfilled with C C C C C C C C C C C C C C C C C C C
- 2-	-4		3.8m: moist			4.0 4.1		PID<1		-4
- +	-5		5.0m: wet		E	5.0 5.1		PID<1		PVC screen
	-]					
-1 -1		6.0	Bore discontinued at 6.0m	<u> . . . </u>						6 End cap
RI	G: S	cou	t DRILLER: Ground Test		LOC	GGED	: KS	CASING	G: Un	ncased

TYPE OF BORING: Solid flight auger WATER OBSERVATIONS: Wet at 5.0m REMARKS: *DUP03 sample MW03/1.0-1.1m

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sam E Environmental

Core drilling Disturbed sample Environmental sample

CLIENT: PROJECT: LOCATION:

Parramatta City Council Phase 1 & 2 Contamination Assessment Lennox Bridge Carpark
Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*		
Extremely low	EL	<0.03	<0.6		
Very low	VL	0.03 - 0.1	0.6 - 2		
Low	L	0.1 - 0.3	2 - 6		
Medium	М	0.3 - 1.0	6 - 20		
High	Н	1 - 3	20 - 60		
Very high	VH	3 - 10	60 - 200		
Extremely high	EH	>10	>200		

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description					
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulde and classified as a soil but the texture of the original rock still evident.					
Highly weathered	HW	Limonite staining or bleaching affects whole of roc substance and other signs of decomposition are eviden Porosity and strength may be altered as a result of iro leaching or deposition. Colour and strength of original fres rock is not recognisable					
Moderately weathered	MW	Staining and discolouration of rock substance has taken place					
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or n change of strength from fresh rock					
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects					
Fresh	Fr	No signs of decomposition or staining					

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes		
Thinly laminated	< 6 mm		
Laminated	6 mm to 20 mm		
Very thinly bedded	20 mm to 60 mm		
Thinly bedded	60 mm to 0.2 m		
Medium bedded	0.2 m to 0.6 m		
Thickly bedded	0.6 m to 2 m		
Very thickly bedded	> 2 m		

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)			
Boulder	>200			
Cobble	63 - 200			
Gravel	2.36 - 63			
Sand	0.075 - 2.36			
Silt	0.002 - 0.075			
Clay	<0.002			

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Appendix I

Laboratory Results and Chain-of Custody

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

62420

72628.00, Parramatta

/

26/09/2011

61 Soils

21/09/2011

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kate Sargent

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 4/10/11 4/10/11 1 Date of Preliminary Report: Not issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

Alano Nancy Zhang

Chemist

Rhian Morgan Reporting Supervisor

Sarlamis Inorganics Supervisor

Paul Ching

Approved Signatory

Envirolab Reference: **Revision No:**

62420 R 00

Client Reference: 72628.00, Parramatta

Our Reference:	LINITS	62420-1	62420-35	62420-53
Your Reference		BH01/0 2-0 3	BH07/0 8-1 0	BH10/1 7-1 8
Date Sampled		23/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil
 Date extracted	_	28/09/2011	28/00/2011	28/00/2011
		20/09/2011	20/09/2011	20/09/2011
Dichlorodifluoromothana	ma/ka	-1	23/03/2011	-1
Chloromothana	mg/kg	<1	<1	<1
	mg/kg	<1	<1	<1
Vinyi Chionde	mg/kg	<1 <1		<1
Bromometriane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Irichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1
chloroform	mg/kg	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1
bromoform	mg/ka	<1	<1	<1
m+p-xvlene	ma/ka	<2	<2	<2
styrene	ma/ka	<1	<1	<1
1.1.2.2-tetrachloroethane	ma/ka	<1	<1	<1
o-Xvlene	ma/ka	<1	<1	<1
1.2.3-trichloropropane	ma/ka	<1	<1	<1
, ,				

VOCs in soil				
Our Reference:	UNITS	62420-1	62420-35	62420-53
Your Reference		BH01/0.2-0.3	BH07/0.8-1.0	BH10/1.7-1.8
Date Sampled		23/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil
isopropylbenzene	mg/kg	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluorometha	%	99	99	99
Surrogate aaa-Trifluorotoluene	%	132	114	108
Surrogate Toluene-da	%	104	106	104
Surrogate 4-Bromofluorobenzene	%	100	101	100

vTRH & BTEX in Soil						
Our Reference:	UNITS	62420-1	62420-3	62420-7	62420-8	62420-12
Your Reference		BH01/0.2-0.3	BH01/1.0-1.1	BH02/0.4-0.5	BH02/1.0-1.1	BH03/0.5-0.6
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	132	120	109	128	132

vTRH & BTEX in Soil						
Our Reference:	UNITS	62420-19	62420-22	62420-27	62420-35	62420-39
Your Reference		BH04/1.0-1.1	BH05/0.4-0.5	BH06/0.2-0.3	BH07/0.8-1.0	BH08/0.1-0.2
Date Sampled		22/09/2011	22/09/2011	23/09/2011	22/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	124	124	112	114	123

vTRH & BTEX in Soil						
Our Reference:	UNITS	62420-46	62420-47	62420-51	62420-52	62420-53
Your Reference		BH09/0.5-0.6	BH09/1.0-1.1	BH10/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	120	125	124	128	108

Client Reference: 72628.00, Parramatta

vTRH&BTEX in Soil						
Our Reference:	UNITS	62420-57	62420-58	62420-59	62420-60	62420-61
Your Reference		Dup08	TB1	TS1	TB2	TS2
Date Sampled		23/09/2011	22/09/2011	22/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
vTRHC6 - C9	mg/kg	<25	<25	[NA]	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	104%	<0.2	105%
Toluene	mg/kg	<0.5	<0.5	104%	<0.5	105%
Ethylbenzene	mg/kg	<1	<1	107%	<1	102%
m+p-xylene	mg/kg	<2	<2	107%	<2	102%
o-Xylene	mg/kg	<1	<1	107%	<1	102%
Surrogate aaa-Trifluorotoluene	%	114	111	106	126	105

sTRH in Soil (C10-C36)						
Our Reference:	UNITS	62420-1	62420-3	62420-7	62420-8	62420-12
Your Reference		BH01/0.2-0.3	BH01/1.0-1.1	BH02/0.4-0.5	BH02/1.0-1.1	BH03/0.5-0.6
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	94	130	137	138	136

sTRH in Soil (C10-C36)						
Our Reference:	UNITS	62420-19	62420-22	62420-27	62420-35	62420-39
Your Reference		BH04/1.0-1.1	BH05/0.4-0.5	BH06/0.2-0.3	BH07/0.8-1.0	BH08/0.1-0.2
Date Sampled		22/09/2011	22/09/2011	23/09/2011	22/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	138	99	78	73	72

sTRH in Soil (C10-C36)						
Our Reference:	UNITS	62420-46	62420-47	62420-51	62420-52	62420-53
Your Reference		BH09/0.5-0.6	BH09/1.0-1.1	BH10/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	70	82	82	85	88

sTRH in Soil (C10-C36)		
Our Reference:	UNITS	62420-57
Your Reference		Dup08
Date Sampled		23/09/2011
Type of sample		Soil
Date extracted	-	28/09/2011
Date analysed	-	28/09/2011
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC 29 - C36	mg/kg	<100
Surrogate o-Terphenyl	%	88

72628.00, Parramatta

PAHs in Soil						
Our Reference:	UNITS	62420-1	62420-3	62420-7	62420-8	62420-12
Your Reference		BH01/0.2-0.3	BH01/1.0-1.1	BH02/0.4-0.5	BH02/1.0-1.1	BH03/0.5-0.6
DateSampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	22/09/2011
I ype of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	96	95	98	97	97
	1	1	1			
PAHs in Soil		0040040	00,400,000	00400.07	00400.05	00,400,00
Our Reference:	UNITS	62420-19 PH04/1 0 1 1	62420-22 PH05/0 4 0 5	62420-27 PHOG/0.2.0.2	62420-35 PH07/0 9 1 0	62420-39 PH08/0 1 0 2
Date Sampled		22/09/2011	22/09/2011	23/09/2011	22/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Naphthalene	ma/ka	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	ma/ka	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	ma/ka	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	ma/ka	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.3	<0.1	0.2	0.2

Envirolab Reference:	62420
Revision No:	R 00

Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Chrysene

Benzo(b+k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-c,d)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Surrogate p-Terphenyl-d14

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

<0.1

<0.1

<0.1

<0.1

<0.1

<0.2

<0.05

<0.1

<0.1

<0.1

96

<0.1

0.7

0.7

0.5

0.4

0.8

0.54

0.3

<0.1

0.3

116

<0.1

0.1

0.1

<0.1

<0.1

<0.2

0.11

<0.1

<0.1

<0.1

97

<0.1

0.4

0.4

0.2

0.2

0.3

0.23

0.1

<0.1

0.1

95

<0.1

<0.1

<0.1

<0.1

<0.1

<0.2

<0.05

<0.1

<0.1

<0.1

94

PAHs in Soil						
Our Reference:	UNITS	62420-46	62420-47	62420-51	62420-52	62420-53
Your Reference		BH09/0.5-0.6	BH09/1.0-1.1	BH10/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.5	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.6	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	0.4	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.27	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	98	97	95	97	96

PAHs in Soil		
Our Reference:	UNITS	62420-57
Your Reference		Dup08
Date Sampled		23/09/2011
Type of sample		Soil
Date extracted	-	28/09/2011
Date analysed	-	28/09/2011
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Surrogate p-Terphenyl-d14	%	93

Organochlorine Pesticides in soil						
Our Reference:	UNITS	62420-1	62420-7	62420-12	62420-22	62420-27
Your Reference		BH01/0.2-0.3	BH02/0.4-0.5	BH03/0.5-0.6	BH05/0.4-0.5	BH06/0.2-0.3
Date Sampled		23/09/2011	23/09/2011	22/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	93	95	93	108	91

Organochlorine Pesticides in soil						
Our Reference:	UNITS	62420-35	62420-39	62420-46	62420-52	62420-53
Your Reference		BH07/0.8-1.0	BH08/0.1-0.2	BH09/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		22/09/2011	22/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	93	94	95	95	95

Organophosphorus Pesticides						
Our Reference:	UNITS	62420-1	62420-7	62420-12	62420-22	62420-27
Your Reference		BH01/0.2-0.3	BH02/0.4-0.5	BH03/0.5-0.6	BH05/0.4-0.5	BH06/0.2-0.3
Date Sampled		23/09/2011	23/09/2011	22/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	93	95	93	108	91
			1			
Organophosphorus Pesticides						
Our Reference:	UNITS	62420-35	62420-39	62420-46	62420-52	62420-53
Your Reference		BH07/0.8-1.0	BH08/0.1-0.2	BH09/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		22/09/2011 Soil	22/09/2011 Soil	23/09/2011 Soil	23/09/2011 Soil	23/09/2011 Soil
		301	301	301	301	301
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
renitiothon						1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl Ethion	mg/kg mg/kg	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1

Client Reference: 72628.00, I

72628.00, Parramatta

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

95

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

95

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

95

PCBs in Soil						
Our Reference:	UNITS	62420-1	62420-7	62420-12	62420-22	62420-27
Your Reference		BH01/0.2-0.3	BH02/0.4-0.5	BH03/0.5-0.6	BH05/0.4-0.5	BH06/0.2-0.3
Date Sampled		23/09/2011	23/09/2011	22/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	93	95	93	108	91
PCBs in Soil						
Our Reference:	UNITS	62420-35	62420-39	62420-46	62420-52	62420-53
Your Reference		BH07/0.8-1.0	BH08/0.1-0.2	BH09/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		22/09/2011	22/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

93

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

94

Arochlor 1016

Arochlor 1221*

Arochlor 1232

Arochlor 1242

Arochlor 1248

Arochlor 1254

Arochlor 1260

Surrogate TCLMX

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

Client Reference: 72628.

Total Phenolics in Soil						
Our Reference:	UNITS	62420-1	62420-7	62420-12	62420-22	62420-27
Your Reference		BH01/0.2-0.3	BH02/0.4-0.5	BH03/0.5-0.6	BH05/0.4-0.5	BH06/0.2-0.3
Date Sampled		23/09/2011	23/09/2011	22/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Date analysed	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Total Phenolics in Soil						
Our Reference:	UNITS	62420-35	62420-39	62420-46	62420-52	62420-53
Your Reference		BH07/0.8-1.0	BH08/0.1-0.2	BH09/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		22/09/2011	22/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Date analysed	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Acid Extractable metals in soil						
Our Reference:	UNITS	62420-1	62420-3	62420-7	62420-8	62420-12
Your Reference		BH01/0.2-0.3	BH01/1.0-1.1	BH02/0.4-0.5	BH02/1.0-1.1	BH03/0.5-0.6
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	150	8	4	5	4
Copper	mg/kg	34	6	3	3	8
Lead	mg/kg	6	9	7	5	39
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	120	4	2	2	3
Zinc	mg/kg	63	12	7	7	12
Acid Extractable metals in soil						

Acid Extractable metals in soil						
Our Reference:	UNITS	62420-19	62420-22	62420-27	62420-35	62420-39
Your Reference		BH04/1.0-1.1	BH05/0.4-0.5	BH06/0.2-0.3	BH07/0.8-1.0	BH08/0.1-0.2
Date Sampled		22/09/2011	22/09/2011	23/09/2011	22/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Arsenic	mg/kg	<4	10	5	6	<4
Cadmium	mg/kg	<0.5	1.9	0.5	4.0	<0.5
Chromium	mg/kg	1	16	12	26	140
Copper	mg/kg	2	58	34	1,500	32
Lead	mg/kg	2	630	510	220	6
Mercury	mg/kg	<0.1	2.3	0.4	0.2	<0.1
Nickel	mg/kg	<1	9	6	92	120
Zinc	mg/kg	4	1,300	220	460	62

Acid Extractable metals in soil						
Our Reference:	UNITS	62420-46	62420-47	62420-51	62420-52	62420-53
Your Reference		BH09/0.5-0.6	BH09/1.0-1.1	BH10/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Arsenic	mg/kg	<4	<4	<4	<4	4
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	5	3	13	6	14
Copper	mg/kg	4	2	7	<1	14
Lead	mg/kg	7	4	62	4	20
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	3	2	2	1	3
Zinc	mg/kg	7	5	31	1	10

Acid Extractable metals in soil		
Our Reference:	UNITS	62420-57
Your Reference		Dup08
Date Sampled		23/09/2011
Type of sample		Soil
Date digested	-	28/09/2011
Date analysed	-	28/09/2011
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.5
Chromium	mg/kg	8
Copper	mg/kg	6
Lead	mg/kg	9
Mercury	mg/kg	<0.1
Nickel	mg/kg	4
Zinc	mg/kg	11

Moisture						
Our Reference:	UNITS	62420-1	62420-3	62420-7	62420-8	62420-12
Your Reference		BH01/0.2-0.3	BH01/1.0-1.1	BH02/0.4-0.5	BH02/1.0-1.1	BH03/0.5-0.6
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Moisture	%	7.6	9.7	6.2	6.7	7.6
Moisture						
Our Reference:	UNITS	62420-19	62420-22	62420-27	62420-35	62420-39
Your Reference		BH04/1.0-1.1	BH05/0.4-0.5	BH06/0.2-0.3	BH07/0.8-1.0	BH08/0.1-0.2
Date Sampled		22/09/2011	22/09/2011	23/09/2011	22/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Moisture	%	3.8	11	13	11	6.8
		1		1		
Moisture						
Our Reference:	UNITS	62420-46	62420-47	62420-51	62420-52	62420-53
Your Reference		BH09/0.5-0.6	BH09/1.0-1.1	BH10/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		23/09/2011	23/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date prepared	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Moisture	%	6.6	4.8	8.2	7.6	16
Moisture						
Our Reference:	UNITS	62420-57	62420-58	62420-60		
Your Reference		Dup08	TB1	TB2		
Date Sampled		23/09/2011	22/09/2011	23/09/2011		
Type of sample		Soil	Soil	Soil		
Date prepared	-	28/09/2011	28/09/2011	28/09/2011	1	
Date analysed	-	29/09/2011	29/09/2011	29/09/2011		
Moisture	%	9.0	3.8	4.5		
					T	

Asbestos ID - soils Our Reference: Your Reference Date Sampled Type of sample	UNITS	62420-1 BH01/0.2-0.3 23/09/2011 Soil	62420-7 BH02/0.4-0.5 23/09/2011 Soil	62420-12 BH03/0.5-0.6 22/09/2011 Soil	62420-22 BH05/0.4-0.5 22/09/2011 Soil	62420-27 BH06/0.2-0.3 23/09/2011 Soil
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Sample mass tested	g	Approx 40g	Approx 40g	Approx 40g	Approx 40g	Approx 40g
Sample Description	-	Dark grey coarse- grained soil & rocks	Red-brown fine- grained soil	Brown fine- grained soil	Brown coarse- grained soil	Brown coarse- grained soil
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected
Ashastas ID - soils						
Our Reference:	UNITS	62420-35	62420-39	62420-46	62420-52	62420-53
Your Reference		BH07/0.8-1.0	BH08/0.1-0.2	BH09/0.5-0.6	BH10/1.0-1.1	BH10/1.7-1.8
Date Sampled		22/09/2011	22/09/2011	23/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Sample mass tested	g	27.62g	Approx 40g	Approx 40g	Approx 40g	Approx 40g
Sample Description	-	Beige coarse- grained soil & fragments	Dark grey coarse- grained soil & rocks	Red-brown coarse- grained soil	Beige coarse- grained soil	Red-brown clayey soil
Asbestos ID in soil	-	Chrysotile asbestos detected Amosite asbestos detected	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected

Miscellaneous Inorg - soil						
Our Reference:	UNITS	62420-2	62420-13	62420-20	62420-22	62420-30
Your Reference		BH01/0.5-0.6	BH03/1.0-1.1	BH04/1.5-1.6	BH05/0.4-0.5	BH06/1.1-1.2
Date Sampled		23/09/2011	22/09/2011	22/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Date analysed	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
pH 1:5 soil:water	pH Units	8.2	8.2	7.4	8.0	7.7
Chloride, Cl 1:5 soil:water	mg/kg	17	3	[NA]	6	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	23	22	[NA]	17	[NA]

Miscellaneous Inorg - soil						
Our Reference:	UNITS	62420-35	62420-40	62420-43	62420-47	62420-51
Your Reference		BH07/0.8-1.0	BH08/0.3-0.4	BH08/2.0-2.1	BH09/1.0-1.1	BH10/0.5-0.6
Date Sampled		22/09/2011	22/09/2011	22/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Data avenavad		20/00/2011	20/00/2011	20/00/2011	20/00/2011	20/00/2011
Late prepared	_					
Batepieparea	-	30/03/2011	30/03/2011	30/03/2011	30/03/2011	30/03/2011
Date analysed	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Date analysed pH 1:5 soil:water	- pHUnits	30/09/2011 10.6	30/09/2011 6.9	30/09/2011 4.7	30/09/2011 7.9	30/09/2011 6.9
Date analysed pH 1:5 soil:water Chloride, Cl 1:5 soil:water	- pH Units mg/kg	30/09/2011 10.6 [NA]	30/09/2011 6.9 [NA]	30/09/2011 4.7 16	30/09/2011 7.9 [NA]	30/09/2011 6.9 [NA]

Miscellaneous Inorg - soil		
Our Reference:	UNITS	62420-53
Your Reference		BH10/1.7-1.8
Date Sampled		23/09/2011
Type of sample		Soil
Date prepared	-	30/09/2011
Date analysed	-	30/09/2011
pH 1:5 soil:water	pHUnits	7.3
Chloride, Cl 1:5 soil:water	mg/kg	13
Sulphate, SO4 1:5 soil:water	mg/kg	71

ESP/CEC				
Our Reference:	UNITS	62420-2	62420-22	62420-43
Your Reference		BH01/0.5-0.6	BH05/0.4-0.5	BH08/2.0-2.1
Date Sampled		23/09/2011	22/09/2011	22/09/2011
Type of sample		Soil	Soil	Soil
Exchangeable Ca	meq/100g	2.5	22	0.40
ExchangeableK	meq/100g	0.13	0.19	0.042
ExchangeableMg	meq/100g	0.13	0.36	0.49
ExchangeableNa	meq/100g	0.087	0.033	0.012
Cation Exchange Capacity	meq/100g	2.9	22	<1.0
ESP	%	3.0	<1.0	1.3

Client Reference: 72628.00, Parramatta

Texture and Salinity						
Our Reference:	UNITS	62420-2	62420-13	62420-20	62420-22	62420-30
Your Reference		BH01/0.5-0.6	BH03/1.0-1.1	BH04/1.5-1.6	BH05/0.4-0.5	BH06/1.1-1.2
Date Sampled		23/09/2011	22/09/2011	22/09/2011	22/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Electrical Conductivity 1:5 soil:water	µS/cm	86	49	30	100	48
Texture Value		9.0	9.0	[NA]	[NA]	14
Texture	-	CLAY LOAM	CLAY LOAM	[NA]	[NA]	SANDY
						LOAM
ECe	dS/m	1.0	0	[NA]	[NA]	1.0
Class	-	NONSALINE	NONSALINE	[NA]	[NA]	NONSALINE

Texture and Salinity						
Our Reference:	UNITS	62420-35	62420-40	62420-43	62420-47	62420-51
Your Reference		BH07/0.8-1.0	BH08/0.3-0.4	BH08/2.0-2.1	BH09/1.0-1.1	BH10/0.5-0.6
Date Sampled		22/09/2011	22/09/2011	22/09/2011	23/09/2011	23/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Electrical Conductivity 1:5 soil:water	µS/cm	460	340	190	42	180
Texture Value		[NA]	[NA]	14	[NA]	[NA]
Texture	-	[NA]	[NA]	SANDY LOAM	[NA]	[NA]
ECe	dS/m	[NA]	[NA]	3.0	[NA]	[NA]
Class	-	[NA]	[NA]	SLIGHTLY SALINE	[NA]	[NA]

Texture and Salinity		
Our Reference:	UNITS	62420-53
Your Reference		BH10/1.7-1.8
Date Sampled		23/09/2011
Type of sample		Soil
Electrical Conductivity 1:5 soil:water	µS/cm	130
Texture Value		8.0
Texture	-	LIGHT MEDIUM CLAY
ECe	dS/m	1.0
Class	-	NONSALINE

Client Reference: 72628.00, Parramatta

MethodID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 21st ED 5530 D.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 21st ED, 4500-H+.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 21st ED, 4110 -B.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA 21st ED 2510 and Rayment & Higginson.

72628.00, Parramatta

CLUALITYCON IRQL. UMIS PAL MEHOD Bank Duplicate insuits Spike Smit Spike Smit									
VOCs in soil	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Date extracted - 28/09/2 62420-1 28/09/2011 LCS-1 28/09/2011 Date analysed - 28/09/2 62420-1 28/09/2011 LCS-1 29/09/2011 Dichlorodifluoromethane mg/kg 1 Org-014 62420-1 <1 <1	VOCs in soil						Base II Duplicate II % RPD		Recovery
Date analysed - 2909/2011 C62420-1 2909/2011 LCS-1 2909/2011 Dichorodifluoranothane mg/kg 1 Org-014 62420-1 <1 <1	Date extracted	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
	Date analysed	-			29/09/2 011	62420-1	29/09/2011 29/09/2011	LCS-1	29/09/2011
	Dichlorodifluoromethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloromethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
Bromomethane mg/kg 1 Org-014	Vinyl Chloride	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
	Bromomethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,1-Dichloroethene mgkg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR] 1,1-dichloroethene mgkg 1 Org-014 <1	Trichlorofluoromethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1-Dichloroethene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,1-dichloroethane mgkg 1 $Org-014$ 62420-1	trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
cis-1,2-dichloroethene mgkg 1 $Org-014$ <1 $62420-1$ $<1 <1$ $[NR]$ $[NR]$ bromochloromethane mgkg 1 $Org-014$ <1	1,1-dichloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	116%
bromochloromethane mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR] chloroform mg/kg 1 Org-014 <1	cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
chloroform mg/kg 1 Org-014 62420-1	bromochloromethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	chloroform	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	108%
1,2-dichloroethane mg/kg 1 $Org-014$ <1 $62420-1$ $<1 <1$ LCS-1 99% 1,1,1-trichloroethane mg/kg 1 $Org-014$ <1	2,2-dichloropropane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,1,1-trichloroethane mg/kg 1 $Org-014$ <1 $62420-1$ $<1 <1$ $LCS-1$ 101% 1,1-dichloropropene mg/kg 1 $Org-014$ <1	1,2-dichloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	99%
1,1-dichloropropenemg/kg1 $Org-014$ <1 $62420-1$ $<1 <1$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $($	1,1,1-trichloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	101%
Cyclohexane mg/kg 1 Org-014 <1 62420-1 <1 <1 INR] INR] carbon tetrachloride mg/kg 1 Org-014 <1	1,1-dichloropropene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cyclohexane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
Benzene mg/kg 0.2 Org-014 <0.2 62420-1 <0.2 <0.2 [NR] [NR] dibromomethane mg/kg 1 Org-014 <1	carbon tetrachloride	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
dibromomethane mg/kg 1 Org-014 62420-1	Benzene	mg/kg	0.2	Org-014	<0.2	62420-1	<0.2 <0.2	[NR]	[NR]
1,2-dichloropropane mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR] trichloroethene mg/kg 1 Org-014 <1	dibromomethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2-dichloropropane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
bromodichloromethane mg/kg 1 Org-014 <1 62420-1 <1 <1 LCS-1 110% trans-1,3- mg/kg 1 Org-014 <1	trichloroethene	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	100%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bromodichloromethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	110%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	trans-1,3- dichloropropene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
Toluenemg/kg0.5Org-014<0.5 $62420-1$ <0.5 <0.5[NR][NR]1,3-dichloropropanemg/kg1Org-014<1	1,1,2-trichloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Toluene	mg/kg	0.5	Org-014	<0.5	62420-1	<0.5 <0.5	[NR]	[NR]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,3-dichloropropane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	dibromochloromethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	110%
tetrachloroethene mg/kg 1 Org-014 <1 62420-1 <1 <1 LCS-1 104% 1,1,1,2- mg/kg 1 Org-014 <1	1,2-dibromoethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,1,1,2- tetrachloroethane mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR] chlorobenzene mg/kg 1 Org-014 <1	tetrachloroethene	mg/kg	1	Org-014	<1	62420-1	<1 <1	LCS-1	104%
chlorobenzene mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR] Ethylbenzene mg/kg 1 Org-014 <1	1,1,1,2- tetrachloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
Ethylbenzene mg/kg 1 Org-014 <1 62420-1 <1 <1 INR] INR]	chlorobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
	Ethylbenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
bromoform mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR]	bromoform	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
m+p-xylene mg/kg 2 Org-014 <2 62420-1 <2 <2 [NR] [NR]	m+p-xylene	mg/kg	2	Org-014	~2	62420-1	<2 <2	[NR]	[NR]
styrene mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR]	styrene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,1,2,2- mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR] [NR] tetrachloroethane [NR] [NR]	1,1,2,2- tetrachloroethane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
o-Xylene mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR]	o-Xylene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,2,3-trichloropropane mg/kg 1 Org-014 <1 62420-1 <1 <1 [NR]	1,2,3-trichloropropane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]

Envirolab Reference: Revision No:

62420 R 00

Client Reference:	
-------------------	--

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		
isopropylbenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	62420-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		Org-014	100	62420-1	99 98 RPD: 1	LCS-1	102%
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-014	125	62420-1	132 134 RPD:2	LCS-1	121%
Surrogate Toluene-d8	%		Org-014	105	62420-1	104 105 RPD:1	LCS-1	103%
Surrogate 4- Bromofluorobenzene	%		Org-014	101	62420-1	100 100 RPD: 0	LCS-1	101%

72628.00, Parramatta

UTH # BTEX in Sold Image: strate in the strate	QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Date extracted - 28/09/2 62420-1 28/09/2011 LCS-1 28/09/2011 Date analysed - 011 20082 62420-1 28/08/2011 LCS-1 28/08/2011 VTRHCs-Cy mg/kg 0.5 Org-016 -0.2 62420-1 -0.2 -0.2 LCS-1 88/02 Toluene mg/kg 0.5 Org-016 -0.5 62420-1 -0.2 -2 LCS-1 93% Entybornearu mg/kg 1 Org-016 -0.5 62420-1 -2 -2 LCS-1 10% ox-tytion mg/kg 1 Org-016 -2 62420-1 -2 -2 LCS-1 10% Sympatre ana- mg/kg 1 Org-016 125 62420-1 -28/08/2011 LCS-1 120% CUALTYCONTROL UNITS POL METHOD Bark Duplicate results Spike 5% Recovery TRHC ~ C-4 mg/kg 50 Org-003 -00 62420-1 -28/09/2011 LCS-1	vTRH & BTEX in Soil						Base II Duplicate II % RPD		Recovery
Date analysed - 20092 011 62420-1 011 28092011 28092011 LCS-1 29092011 VTRHCs-Ca mgkg 0.2 Org-016 -d.2 62420-1 -d.25 -d.25 LCS-1 99% Benzene mgkg 0.2 Org-016 -d.2 62420-1 -d.21 -d.2 LCS-1 99% Ethythenzene mgkg 1 Org-016 -d 62420-1 -d.21 -d.2 LCS-1 99% ox-lytene mgkg 2 Org-016 -d 62420-1 -d.21 -d.2 LCS-1 99% ox-lytene mgkg 1 Org-016 -d 62420-1 -d.11 -d.1 LCS-1 96% Symogate aaa- "M Org-016 125 62420-1 -d.20092011 LCS-1 28/96.2% QUALTYCONTROL UNITS POL METHOD Bank Duplicate results Splex % Recovery TRHC n - C+ mgkg 50 Org-003 -d00 62420-1 -d001 -00 LCS-1 <t< td=""><td>Date extracted</td><td>-</td><td></td><td></td><td>28/09/2 011</td><td>62420-1</td><td>28/09/2011 28/09/2011</td><td>LCS-1</td><td>28/09/2011</td></t<>	Date extracted	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Date analysed	-			29/09/2 011	62420-1	29/09/2011 29/09/2011	LCS-1	29/09/2011
Benzene Tollene mgkg mgkg 0.2 Org-016 <0.2 62420-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6220-1 <0.5 6200-2011 LCS-1 2809-2011 Date extracted - - - 2809-201 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2011 2809-2	vTRHC6 - C9	mg/kg	25	Org-016	<25	62420-1	<25 <25	LCS-1	93%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzene	mg/kg	0.2	Org-016	<0.2	62420-1	<0.2 <0.2	LCS-1	89%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene	mg/kg	0.5	Org-016	<0.5	62420-1	<0.5 <0.5	LCS-1	106%
msp-sylene o-Xylene mg/kg mg/kg 2 Org-016 -2 62420-1 (125 -22 1-2 (2420-1) LCS-1 (11 -1) PM/L LCS-1 P1% 95% Surgegie aaa- Tithucoroluene % DQL METHOD Bank Duplicate Smit Duplicate results Spike Smit	Ethylbenzene	mg/kg	1	Org-016	<1	62420-1	<1 <1	LCS-1	90%
o-Xylene mgkg 1 Org-016	m+p-xylene	mg/kg	2	Org-016	2	62420-1	<2 <2	LCS-1	91%
Surrogate aaa- Trifluorotoluene % Org-016 125 62420-1 132 134 RPD:2 LCS-1 120% QUALITYCONTROL QUALITYCONTROL UMITS POL METHOD Bank Duplicate results Spike Smit	o-Xylene	mg/kg	1	Org-016	<1	62420-1	<1 <1	LCS-1	95%
	<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	125	62420-1	132 134 RPD:2	LCS-1	120%
sTRH in Soli (C10-C36) Image: constraint of the constraint of	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Date extracted - 2809/2012 62420-1 2809/2011 2809/2011 LCS-1 2809/2011 Date analysed - - 2809/2011 62420-1 2809/2011 2809/2011 LCS-1 2809/2011 TRH Cn - Cia mg/kg 50 Org-003 <50	sTRH in Soil (C10-C36)						Base II Duplicate II % RPD		Recovery
Date analysed - - 2809/2 011 62420-1 011 2809/2011 [28/09/2011] [28/09/2011] LGS-1 2809/2011 TRHC n - C14 mgkg 100 Org-003 50 62420-1 <50 [50]	Date extracted	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date analysed	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TRHC 10 - C14	mg/kg	50	Org-003	<50	62420-1	<50 <50	LCS-1	97%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TRHC 15 - C28	mg/kg	100	Org-003	<100	62420-1	<100 <100	LCS-1	97%
Surrogate o-Terphenyl % Org-003 90 62420-1 94 118 RPD:23 LCS-1 91% QUALITY CONTROL UNITS PQL METHOD Blank Duplicate Sm# Duplicate results Spike Sm# Recovery PAHs in Soil - - 28/09/2 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Date extracted - - 28/09/2 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Naphthalene mg/kg 0.1 Org-012 subset <0.1	TRHC29 - C36	mg/kg	100	Org-003	<100	62420-1	<100 <100	LCS-1	95%
QUALITY CONTROL UNITS POL METHOD Blank Duplicate Sm# Duplicate results Spike Sm# Spike % Recovery PAHs in Soil - - - 28/09/2 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Date extracted - - 28/09/2 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Naphthalene mg/kg 0.1 Org-012 subset <0.1	Surrogate o-Terphenyl	%		Org-003	90	62420-1	94 118 RPD:23	LCS-1	91%
PAHs in Soil recovery Base II Duplicate II%RPD Recovery Date extracted - 28/09/2 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Date analysed - 28/09/2 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Naphthalene mg/kg 0.1 Org-012 <0.1									
Date extracted - 28/09/2 011 62420-1 28/09/2 011 28/09/2011 28/09/2011 LCS-1 28/09/2011 Date analysed - 28/09/2 011 62420-1 28/09/2011 28/09/2011 LCS-1 28/09/2011 Naphthalene mg/kg 0.1 Org-012 subset <0.1	QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Date analysed28/09/2 28/09/262420-1 62420-128/09/2011 28/09/2011LCS-128/09/2011Naphthalenemg/kg0.1Org-012 subset<0.1	QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Naphthalenemg/kg0.1 $Org-012$ subset<0.1 $62420-1$ $<0.1 < 0.1$ $LCS-1$ 94%Acenaphthylenemg/kg0.1 $Org-012$ subset<0.1	QUALITY CONTROL PAHs in Soil Date extracted	UNITS	PQL	METHOD	Blank 28/09/2	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011	Spike Sm#	Spike % Recovery 28/09/2011
Acenaphthylene mg/kg 0.1 Org-012 subset <0.1 62420-1 <0.1 <0.1 [NR] [NR] Acenaphthene mg/kg 0.1 Org-012 subset <0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed	UNITS - -	PQL		Blank 28/09/2 011 28/09/2	Duplicate Sm# 62420-1 62420-1	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011	Spike Sm# LCS-1 LCS-1	Spike % Recovery 28/09/2011 28/09/2011
Acenaphthenemg/kg0.1Org-012 subset<0.1 $62420 \cdot 1$ <0.1 $ <0.1$ [NR][NR]Fluorenemg/kg0.1Org-012 subset<0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene	UNITS - - mg/kg	PQL 0.1	METHOD Org-012	Blank 28/09/2 011 28/09/2 011 	Duplicate Sm# 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 LCS-1	Spike % Recovery 28/09/2011 28/09/2011 94%
Fluorene mg/kg 0.1 Org-012 subset <0.1 62420-1 <0.1 <0.1 LCS-1 100% Phenanthrene mg/kg 0.1 Org-012 subset <0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene	UNITS - mg/kg mg/kg	PQL 0.1 0.1	METHOD Org-012 subset Org-012	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 LCS-1 [NR]	Spike % Recovery 28/09/2011 28/09/2011 94% [NR]
Phenanthrenemg/kg0.1Org-012 subset<0.1 $62420-1$ $0.2 0.2 RPD:0$ LCS-198%Anthracenemg/kg0.1Org-012 subset<0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene	UNITS - mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 LCS-1 [NR] [NR]	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] [NR]
Anthracenemg/kg0.1Org-012 subset<0.1 $62420 \cdot 1$ <0.1 <0.1[NR][NR]Fluoranthenemg/kg0.1Org-012 subset<0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene	UNITS - mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II % RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 [NR] [NR] LCS-1	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] [NR] 100%
Fluoranthene mg/kg 0.1 Org-012 subset <0.1 62420-1 <0.1 <0.1 LCS-1 98% Pyrene mg/kg 0.1 Org-012 subset <0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II % RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 0.2 RPD: 0	Spike Sm# LCS-1 LCS-1 [NR] [NR] LCS-1 LCS-1	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] [NR] 100% 98%
Pyrene mg/kg 0.1 Org-012 subset <0.1 62420-1 <0.1 <0.1 LCS-1 103% Benzo(a)anthracene mg/kg 0.1 Org-012 subset <0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 0.2 RPD: 0 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 [NR] [NR] LCS-1 LCS-1 [NR]	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] [NR] 100% 98% [NR]
Benzo(a)anthracene mg/kg 0.1 Org-012 subset <0.1 62420-1 <0.1 <0.1 [NR] [NR] Chrysene mg/kg 0.1 Org-012 subset <0.1	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II %RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 0.2 RPD: 0 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 [NR] [NR] LCS-1 LCS-1 [NR] LCS-1	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] 100% 98% [NR] 98%
Chrysene mg/kg 0.1 Org-012 <0.1 62420-1 <0.1 <0.1 LCS-1 104%	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II%RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 [NR] [NR] LCS-1 [NR] LCS-1 [NR] LCS-1 LCS-1	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] 100% 98% [NR] 98% 103%
	QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 28/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1 62420-1	Duplicate results Base II Duplicate II%RPD 28/09/2011 28/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 0.2 RPD: 0 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-1 LCS-1 [NR] [NR] LCS-1 [NR] LCS-1 [NR] LCS-1 [NR]	Spike % Recovery 28/09/2011 28/09/2011 94% [NR] 100% 98% [NR] 98% 103% [NR]

Envirolab Reference: 62420 Revision No: R 00

Client Reference: 72628.00, Parramatta								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	62420-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	62420-1	<0.05 <0.05	LCS-1	101%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	97	62420-1	96 96 RPD:0	LCS-1	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		Recovery
Date extracted	-			28/09/2	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
Date analysed	-			011 29/09/2 011	62420-1	29/09/2011 29/09/2011	LCS-1	29/09/2011
HCB	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	82%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	96%
Heptachlor	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	68%
delta-BHC	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	73%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	78%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	95%
Dieldrin	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	77%
Endrin	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	69%
pp-DDD	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	107%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	LCS-1	75%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-005	97	62420-1	93 93 RPD:0	LCS-1	93%

				. 12	.020.00, 1 ama	matta		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II %RPD		
Date extracted	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
Date analysed	-			29/09/2 011	62420-1	29/09/2011 29/09/2011	LCS-1	29/09/2011
Diazinon	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	LCS-1	112%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	LCS-1	124%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	62420-1	<0.1 <0.1	LCS-1	117%
Surrogate TCLMX	%		Org-008	97	62420-1	93 93 RPD:0	LCS-1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil				-		Base II Duplicate II % RPD		-
Date extracted	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
Date analysed	-			29/09/2 011	62420-1	29/09/2011 29/09/2011	LCS-1	29/09/2011
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1221*	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	LCS-1	125%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	62420-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	97	62420-1	93 93 RPD:0	LCS-1	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II % RPD		
Date extracted	-			30/09/2 011	62420-1	30/09/2011 30/09/2011	LCS-1	30/09/2011
Date analysed	-			30/09/2 011	62420-1	30/09/2011 30/09/2011	LCS-1	30/09/2011
Total Phenolics (as Phenol)	mg/kg	5	Inorg-030	45	62420-1	<5 <5	LCS-1	83%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date digested	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
Date analysed	-			28/09/2 011	62420-1	28/09/2011 28/09/2011	LCS-1	28/09/2011
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	62420-1	<4 <4	LCS-1	105%
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	62420-1	<0.5 <0.5	LCS-1	111%
L	1	1	1	1	1		1	1

Client Reference: 72628.00, Parramatta								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil						Base II Duplicate II % RPD		Recovery
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	62420-1	150 150 RPD:0	LCS-1	109%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	62420-1	34 34 RPD:0	LCS-1	108%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	62420-1	6 6 RPD:0	LCS-1	105%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	62420-1	<0.1 <0.1	LCS-1	109%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	62420-1	120 120 RPD:0	LCS-1	109%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	62420-1	63 60 RPD:5	LCS-1	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				1
Moisture								
Date prepared	-			28/09/2				
				011				
Date analysed	-			29/09/2 011				
Moisture	%	0.1	Inorg-008	[NT]				
QUALITY CONTROL Asbestos ID - soils	UNITS	PQL	METHOD	Blank				
Date analysed	-			[NT]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Date prepared	-			30/09/2 011	62420-2	30/09/2011 30/09/2011	LCS-1	30/09/2011
Date analysed	-			30/09/2 011	62420-2	30/09/2011 30/09/2011 LCS		30/09/2011
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	62420-2	8.2 8.3 RPD:1	LCS-1	100%
Chloride, Cl 1:5 soil:water	mg/kg	2	Inorg-081	2	62420-2	17 17 RPD:0	LCS-1	86%
Sulphate, SO41:5 soil:water	mg/kg	2	Inorg-081	2	62420-2	23 22 RPD: 4	LCS-1	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
ESP/CEC						Base II Duplicate II % RPD		Recovery
Exchangeable Ca	meq/100 g	0.01	Metals-009	<0.01	62420-2	2.5 2.4 RPD:4	LCS-1	97%
ExchangeableK	meq/100 g	0.01	Metals-009	<0.01	62420-2	0.13 0.12 RPD:8	LCS-1	100%
Exchangeable Mg	meq/100 g	0.01	Metals-009	<0.01	62420-2	0.13 0.13 RPD:0	LCS-1	105%
ExchangeableNa	meq/100 g	0.01	Metals-009	<0.01	62420-2	0.087 0.054 RPD: 47	LCS-1	93%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	62420-2	2.9 2.7 RPD:7	[NR]	[NR]
ESP	%	1	Metals-009	<1.0	62420-2	3.0 2.0 RPD:40	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Texture and Salinity						Base II Duplicate II % RPD		Recovery
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-1	108%
Texture Value			Inorg-002	[NT]	[NT]	[NT]	[NR]	[NR]
ECe	dS/m	0		0	[NT]	[NT]	[NR]	[NR]
Class	-			[NT]	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL	UNITS	6	Dup.Sm#		Duplicate	Spike Sm#	Spike % Recover	у
VOCs in soil				Base + I	Duplicate + %RPD			
Date extracted	-		[NT]		[NT]	62420-35	28/09/2011	
Date analysed	-		[NT]		[NT]	62420-35	29/09/2011	
Dichlorodifluoromethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Chloromethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Vinyl Chloride	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Bromomethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Chloroethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Trichlorofluoromethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
1,1-Dichloroethene	mg/k	g	[NT]		[NT]	[NR]	[NR]	
trans-1,2-dichloroethene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
1,1-dichloroethane	mg/k	g	[NT]		[NT]	62420-35	100%	
cis-1,2-dichloroethene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
bromochloromethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
chloroform	mg/kg	g	[NT]		[NT]	62420-35	91%	
2,2-dichloropropane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
1,2-dichloroethane	mg/kg	g	[NT]		[NT]	62420-35	86%	
1,1,1-trichloroethane	mg/kg	g	[NT]		[NT]	62420-35	81%	
1,1-dichloropropene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Cyclohexane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
carbon tetrachloride	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Benzene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
dibromomethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
1,2-dichloropropane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
trichloroethene	mg/kg	g	[NT]		[NT]	62420-35	85%	
bromodichloromethane	mg/kg	g	[NT]		[NT]	62420-35	90%	
trans-1,3-dichloropropene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
cis-1,3-dichloropropene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
1,1,2-trichloroethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Toluene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
1,3-dichloropropane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
dibromochloromethane	mg/kg	g	[NT]		[NT]	62420-35	89%	
1,2-dibromoethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
tetrachloroethene	mg/ke	g	[NT]		[NT]	62420-35	91%	
1,1,1,2-tetrachloroethane	mg/ke	g	[NT]		[NT]	[NR]	[NR]	
chlorobenzene	mg/k	g	[NT]		[NT]	[NR]	[NR]	

72628.00, Parramatta

Client Reference:

		Client Referenc	e: 72628.00, Parrama	atta	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
VOCs in soil			Base + Duplicate + % RPD		
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%	[NT]	[NT]	62420-35	102%
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	62420-35	119%
Surrogate Toluene-d8	%	[NT]	[NT]	62420-35	105%
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	62420-35	100%

Client Reference: 72628.00, Parramatta								
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery			
vTRH&BTEX in Soil			Base + Duplicate + % RPD					
Date extracted	-	62420-52	28/09/2011 28/09/2011	62420-35	28/09/2011			
Date analysed	-	62420-52	29/09/2011 29/09/2011	62420-35	29/09/2011			
vTRHC6 - C9	mg/kg	62420-52	<25 <25	62420-35	83%			
Benzene	mg/kg	62420-52	<0.2 <0.2	62420-35	76%			
Toluene	mg/kg	62420-52	<0.5 <0.5	62420-35	93%			
Ethylbenzene	mg/kg	62420-52	<1 <1	62420-35	82%			
m+p-xylene	mg/kg	62420-52	<2 <2	62420-35	83%			
o-Xylene	mg/kg	62420-52	<1 <1	62420-35	87%			
<i>Surrogate</i> aaa- Trifluorotoluene	%	62420-52	128 131 RPD:2	62420-35	109%			
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery			
sTRH in Soil (C10-C36)			Base + Duplicate + % RPD					
Date extracted	-	62420-52	28/09/2011 28/09/2011	62420-35	28/09/2011			
Date analysed	-	62420-52	28/09/2011 28/09/2011	62420-35	28/09/2011			
TRHC 10 - C14	mg/kg	62420-52	<50 <50	62420-35	99%			
TRHC 15 - C28	mg/kg	62420-52	<100 <100	62420-35	101%			
TRHC29 - C36	mg/kg	62420-52	<100 <100	62420-35	97%			
Surrogate o-Terphenyl	%	62420-52	85 88 RPD:3	62420-35	71%			
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery			
PAHs in Soil			Base + Duplicate + %RPD					
Date extracted	-	62420-52	28/09/2011 28/09/2011	62420-35	28/09/2011			
Date analysed	-	62420-52	28/09/2011 28/09/2011	62420-35	29/09/2011			
Naphthalene	mg/kg	62420-52	<0.1 <0.1	62420-35	96%			
Acenaphthylene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Acenaphthene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Fluorene	mg/kg	62420-52	<0.1 <0.1	62420-35	102%			
Phenanthrene	mg/kg	62420-52	<0.1 <0.1	62420-35	98%			
Anthracene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Fluoranthene	mg/kg	62420-52	<0.1 <0.1	62420-35	96%			
Pyrene	mg/kg	62420-52	<0.1 <0.1	62420-35	101%			
Benzo(a)anthracene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Chrysene	mg/kg	62420-52	<0.1 <0.1	62420-35	102%			
Benzo(b+k)fluoranthene	mg/kg	62420-52	<0.2 <0.2	[NR]	[NR]			
Benzo(a)pyrene	mg/kg	62420-52	<0.05 <0.05	62420-35	98%			
Indeno(1,2,3-c,d)pyrene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	62420-52	<0.1 <0.1	[NR]	[NR]			
Surrogate p-Terphenyl- d14	%	62420-52	97 95 RPD: 2	62420-35	95%			

Client Reference: 72628.00, Parramatta									
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery				
Date extracted	-	[NT]	[NT]	62420-35	28/09/2011				
Date analysed	-	[NT]	[NT]	62420-35	29/09/2011				
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]				
alpha-BHC	mg/kg	[NT]	[NT]	62420-35	74%				
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]				
beta-BHC	mg/kg	[NT]	[NT]	62420-35	88%				
Heptachlor	mg/kg	[NT]	[NT]	62420-35	63%				
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aldrin	mg/kg	[NT]	[NT]	62420-35	66%				
Heptachlor Epoxide	mg/kg	[NT]	[NT]	62420-35	70%				
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]				
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]				
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]				
pp-DDE	mg/kg	[NT]	[NT]	62420-35	83%				
Dieldrin	mg/kg	[NT]	[NT]	62420-35	68%				
Endrin	mg/kg	[NT]	[NT]	62420-35	60%				
pp-DDD	mg/kg	[NT]	[NT]	62420-35	83%				
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]				
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]				
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]				
Endosulfan Sulphate	mg/kg	[NT]	[NT]	62420-35	64%				
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]				
Surrogate TCLMX	%	[NT]	[NT]	62420-35	91%				
		Client Referenc	e: 72628.00, Parrama	atta					
-----------------------------	-------	-----------------	--------------------------	-----------	------------------	--	--	--	--
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
Organophosphorus			Base + Duplicate + %RPD						
Date extracted	-	[NT]	[NT]	62420-35	28/09/2011				
Date analysed	-	[NT]	[NT]	62420-35	29/09/2011				
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]				
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]				
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]				
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]				
Chlorpyriphos	mg/kg	[NT]	[NT]	62420-35	104%				
Fenitrothion	mg/kg	[NT]	[NT]	62420-35	114%				
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]				
Ethion	mg/kg	[NT]	[NT]	62420-35	113%				
Surrogate TCLMX	%	[NT]	[NT]	62420-35	91%				
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
PCBs in Soil			Base + Duplicate + %RPD						
Date extracted	-	[NT]	[NT]	62420-35	28/09/2011				
Date analysed	-	[NT]	[NT]	62420-35	29/09/2011				
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]				
Arochlor 1221*	mg/kg	[NT]	[NT]	[NR]	[NR]				
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]				
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]				
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]				
Arochlor 1254	mg/kg	[NT]	[NT]	62420-35	125%				
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]				
Surrogate TCLMX	%	[NT]	[NT]	62420-35	101%				
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
Total Phenolics in Soil			Base + Duplicate + % RPD						
Date extracted	-	[NT]	[NT]	62420-7	30/09/2011				
Date analysed	-	[NT]	[NT]	62420-7	30/09/2011				
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	62420-7	79%				
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
Acid Extractable metals in			Base + Duplicate + %RPD						
soil									
Date digested	-	62420-52	28/09/2011 28/09/2011	62420-35	28/09/2011				
Date analysed	-	62420-52	28/09/2011 28/09/2011	62420-35	28/09/2011				
Arsenic	mg/kg	62420-52	<4 <4	62420-35	117%				
Cadmium	mg/kg	62420-52	<0.5 <0.5	62420-35	100%				
Chromium	mg/kg	62420-52	6 4 RPD:40	62420-35	102%				
Copper	mg/kg	62420-52	<1 <1	62420-35	#				
Lead	mg/kg	62420-52	4 3 RPD:29	62420-35	128%				
Mercury	mg/kg	62420-52	<0.1 <0.1	62420-35	115%				
Nickel	mg/kg	62420-52	1 <1	62420-35	121%				
Zinc	mg/kg	62420-52	1 1 RPD: 0	62420-35	#				

		Client Referenc	e: 72628.00, Parramatt
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date prepared	-	62420-51	30/09/2011 30/09/2011
Date analysed	-	62420-51	30/09/2011 30/09/2011
pH 1:5 soil:water	pHUnits	62420-51	6.9 6.9 RPD:0
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]
QUALITY CONTROL ESP/CEC	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Exchangeable Ca	meq/100 g	62420-2	2.5 2.4 RPD:4
Exchangeable K	meq/100 g	62420-2	0.13 0.12 RPD:8
ExchangeableMg	meq/100 g	62420-2	0.13 0.13 RPD:0
ExchangeableNa	meq/100 g	62420-2	0.087 0.054 RPD: 47
Cation Exchange Capacity	meq/100 g	62420-2	2.9 2.7 RPD:7
ESP	%	62420-2	3.0 2.0 RPD:40

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 30-40g of sample in its own container.

Sample 62420-35; Chrysotile and amosite asbestos identified embedded in several fragments of fibre cement (total weight 14.8897g). It is estimated that the fibre cement contains up to 7% asbestos fibres by weight. This calculates to 1.0423g of asbestos fibres, which in 27.62g of soil is 37.74g/kg (i.e. > reporting limit for the method of 0.1g/kg).

Acid Extractable Metals in Soil:# Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier:	Paul Ching
Asbestos ID was authorised by Approved Signatory:	Paul Ching

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

CHAIN OF CUSTODY

Project Nan Project No: Project Mgr Email: Date Requi		To: Envirolab Services Pty Ltd 12 Ashley Street, CHATSWOOD NSW 2067 Attn: Tania Notaras Phone: 9910 6200 Fax: 9910 6201 Email: enquires@envirolabservices.com.au																
Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W – water	Container type	Heavy Metals	втех/ трн	оср/ орр	РСВ	РАН	Phenol	Asbestos	Textural Classification	Hq	U E	Sulphate / Chloride	ESP	V0CS
BH01	0.2-0.3		23/9/11	S	G/P	\times	Х	\times	X	\times	\times	\times						X
	0.5-0.6	2	23/9/11	S	G/P								\times	×	\times	\times	\times	
	1.0-1.1	3	23/9/11	s	G/P	\times	\times			\times								
	2.0-2.1	4	23/9/11	s	G/P													
	3.0-3.1	5	23/9/11	S	G/P											<u>ičauka) –</u> j	Participa	
BH02	0.1-0.2	6	23/9/11	s	G/P		ML 1971								antinos Ao	12 Chaiswood I	SV/ 2067	
	0.4-0.5	7	23/9/11	s	G/P	\mathbf{X}	\times	\times	\times	\times	\times	X			Job No:	Ph: (02)	\$10 8200	_
	1.0-1.1	8	23/9/11	s	G/P	\times	\times			\times				-		26191		
	2.0-2.1	9	23/9/11	s	G/P										Time Receive	d: 17:2	ococ	14:00
	3.0-3.1	10	23/9/11	s	G/P										Received by:	JHi€ mbient	•	samples.
BH03	0.1-0.2	[]	22/9/11	s	G/P									I	Cooling: IceA	cepace		
	0.5-0.6	12	22/9/11	S	G/P	\times	X	\times	\times	\times	\times	$ \times $			e) - HOME		
Lab Report No Send Results I	to: Douglas	Partner	s Address:	<u>96 H</u>	ermitage	e Road, \	West Ryc	le 2114				'n	Pho Fax	ne: (02 : (02	2) 9809 066 2) 9809 409	96 95		
Relinquished by	Kat Juger	∠ Sigr Siar	ned:	genie -		Date & 1	lime: <u>2</u> 6 fime:	19/11	Re Re	eceived	ву: Ву:	1the		Date Date	& Time: <u>2</u> & Time:	5/9/11	17.20	2 -

÷

E

Project Name:	Contamination Assessment – Parramatta	To: Envirolab Services Pty Ltd
Project No:	72628.00 Sampler: Kate Sargent	12 Ashley Street, CHATSWOOD NSW 2067
Project Mgr:	PGMob. Phone: 0439 498 513	Attn: Tania Notaras
Email:	kate.sargent@douglaspartners.com.au	Phone: 9910 6200 Fax: 9910 6201
Date Required:	Standard Lab Quote No	Email: enquires@envirolabservices.com.au

Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W – water	Container type	Heavy Metals	ВТЕХ/ ТРН	OCP/ OPP	РСВ	PAH	Phenol	Asbestos	Textural Classification	Hq	EC	Sulphate / Chloride	ESP	voc
BH03	1.0-1.1	IB	22/9/11	s	G/P								Х	×	\times	\times		
	1.5-1.6	14	22/9/11	s	G/P													
	2.0-2.1	IŚ	22/9/11	s	G/P									annen, Al Alexandro, Gurran an an anna a' a dao airdin			····	
	2.9-3.0	16	22/9/11	s	G/P													
BH04	0.2-0.3	17	22/9/11	s	G/P													
	0.5-0.6	18	22/9/11	S	G/P													
	1.0-1.1	19	22/9/11	s	G/P	\times	\times			$\left \times \right $								
	1.5-1.6	20	22/9/11	s	G/P									×	×	· · · · · ·		
	2.0-2.1	21	22/9/11	s	G/P													
BH05	0.4-0.5	22	22/9/11	s	G/P	X	\times	Х	\times	X	\times	\times		\times	\times	\times	X	
	1.0-1.1	23	22/9/11	s	G/P													
	1.5-1.6	24	22/9/11	s	G/P													
Lab Report N Send Results Relinguished b	o. <u>to:</u> Dougla y: <i>Kali</i>	as Partr	ners Addre	iss:	96 Herm	iitage R Da	oad, We te & Tim	st Ryde 2 ^{e:} _24/9	114 /(/	F	Receive	d By:	Atrie	Phon Fax:	e: (02) 9 (02) 9 Date & ⁻	809 0666 9809 4095 Fime: 26/	9/11	1720
Relinquished by: Signed: Date & Time: Received By: Date & Time:																		

Project Name:	Contamination Assessment – Parramatta	To: Envirolab Services Pty Ltd
Project No:	72628.00 Sampler: Kate Sargent	12 Ashley Street, CHATSWOOD NSW 2067
Project Mgr:	PGMob. Phone: 0439 498 513	Attn: Tania Notaras
Email:	kate.sargent@douglaspartners.com.au	Phone: 9910 6200 Fax: 9910 6201
Date Required:	Standard Lab Quote No	Email: enquires@envirolabservices.com.au

Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W – water	Container type	Heavy Metals	BTEX/ TPH	OCP/ OPP	РСВ	РАН	Phenol	Asbestos	Textural Classification	Ħ	О Ш	Sulphate / Chloride	ESP	V0C5
BH05	2.0-2.1	25	22/9/11	S	G/P											1		
	3.0-3.1	26	22/9/11	s	G/P								a	*****			, , , , , , , , , , , , , , , , , , , ,	
BH06	0.2-0.3	27	23/9/11	s	G/P	\times	\times	X	\times	\times	\times	\times					·	
	0.4-0.5	28	23/9/11	S	G/P													
	0.7-0.8	29	23/9/11	S	G/P													
	1.1-1.2	30	23/9/11	S	G/P								X	×	\times			
	<u>2.0-2.</u> 1	31	23/9/11	S	G/P													
	2.9-3.2	32	23/9/11	S	G/P													
BH07	0.1-0.2	33	22/9/11	s	G/P													
	0.5-0.6	34	22/9/ 1 1	S	G/P													
*	0.8-1.0	35	22/9/11	S	G/P	\times	X	\times	X	\mathbf{X}	X	X		\times	\times			X
	1.5-1.6	36	22/9/11	s	G/P													
Lab Report No													Pho	ne: (02)	9809 066	6		
Send Results t	o: Douglas	Partner	s Address:	96 H	ermitag	e Road, '	West Ry	de 2114					Fax	: (02)	9809 409	95		
Relinquished by	Kat Suga	Sigi سني		2	در	Date &	Time: 🏒	191a -	F	leceived	By:	Mi		Date &	Time: ጋ	6/9/11	17:20	
Relinquished by	Relinquished by: Signed: Date & Time: Received By: Date & Time:													1				
*9	* BH07/0.8-1.0 -> If figurents present in asbertos sample bay please test *													1				

Т

Т

Г

Project Name:	Contamination Assessment – Parramatta	To: Envirolab Services Ptv I td
Project No:	72628.00 Sampler: Kate Sargent	12 Ashley Street CHATSWOOD NSW 2067
Project Mgr:	PGMob. Phone: 0439 498 513	Attn: Tania Notaras
Email:	kate.sargent@douglaspartners.com.au	Phone: 9910 6200 Fax: 9910 6201
Date Required:	Standard Lab Quote No	Email: enquires@envirolabservices.com.au

Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W - water	Container type	Heavy Metais	BTEX/ TPH	оср/ орр	PCB	PAH	Phenol	Asbestos	Textural Classification	Hđ	EC	Sulphate / Chloride	ESP
BH07	2.0-2.1	37	22/9/11	s	G/P		, <u>, , , , , , , , , , , , , , , , , , </u>										
	2.9-3.0	38	22/9/11	s	G/P												
BH08	0.1-0.2	39	22/9/11	S	G/P	\times	\times	\times	\times	Х	\times	\times					
	0.3-0.4	40	22/9/11	s	G/P									X	X		
	1.0-1.1	41	22/9/11	S	G/P												
	1.5-1.6	42	22/9/11	S	G/P												
	2.0-2.1	43	22/9/11	s	G/P								X	\times	\times	×	×
·····	2.9-3.0	44	22/9/11	S	G/P												
BH09	0.1-0.3	45	23/9/11	s	G/P												
	0.5-0.6	46	23/9/11	S	G/P	\times	X	\times	\times	\times	Х	\times				-	
	1.0-1.1	47	23/9/11	s	G/P	\times	X			\times				X	\times		
	2.0-2.1	48	23/9/11	S	G/P												
Lab Report No. Send Results to	o: Douglas	Partner	S Address:	96 H	ermitage	Road, V	West Ryd	de 2114				<i>.</i>	Phor Fax:	ne: (02)	9809 066 9809 409	6 5	
Relinquished by:	Marti Say	Sigr تمريد <u>،</u>	ned:	~	-	Date &	Time: 24	19/01	R	eceived	By:	The		Date 8	Time: 2	6/9/11	17:20
Relinquisned by: Signed: Date & Time:									Received By: U Date & Time:					• •			

Project Nar	ne: Co		To: Envirolab Services Pty Ltd															
Project No:	726	528.00.		. Sam	pler: Ka	ite Sarg	ent		12	Ashle	y Stre	et, CH/	ATSWOO	DD NSW :	2067			
Project Mgr	: PG		Mob. Phone	e: 0439	9 498 5 ⁻	13			At	tn: Ta	- nia No	taras						
Email:	kat	e.sarge	nt@douglasp	artner	s.com.a	u			P۲	one: 9	910 6	200 Fa	ax: 9910	6201				
Date Requi	red: Sta	ndard		Lab	Quote I	No			En	nail: er	nquires	@env	irolabserv	/ices.com	.au			
Sam De D	Sample Depth	Lab ID	Sampling Date	S - soil W - water	Container type	Heavy Metals	втех/ ТРН	оср/ орр	РСВ	HYd	Phenol	Asbestos	Textural Classification	Ha	EC	Sulphate / Chloride	ESP	VOCS
BH09	2.9-3.0	49	23/9/11	S	G/P													
BH10	0.3-0.4	50	23/9/11	s	G/P												<u>-</u>	
	0.5-0.6	51	23/9/11	s	G/P	\times	\times			\times				X	X			
	1.0-1.1	52	23/9/11	S	G/P	\times	\times	\times	\times	\times	Х	\times						
	1.7-1.8	53	23/9/11	S	G/P	X	\times	\times	\times	X	\times	\times	X	\times	X	X		X
	2.5-2.6	54	23/9/11	s	G/P											······		
	3.1-3.2	55	23/9/11	s	G/P												,	
Dup04		-	22/9/11	S	G/P	X	\mathbf{X}			X				* Plea	ise Seud	6 56	Stiliera	tories #
Dup07	4···B	56	22/9/11	s	G/P													
Dup08		57	23/9/11	s	G/P	\times	\times			\times						-		
TB1		58	22/9/11	s	G		X											
TS1		59	22/9/11	S	G		X											
TB2		60	23/9/11	s	G		\times											
TS2		61	23/9/11	s	G		\times											
Lab Report No		••••••											Pho	ne: (02)	9809 066	6		·····
Send Results t	o: Douglas	Partne	rs Address:	96 H	ermitage	e Road, V	West Ryc	le 2114				<u>//</u>	Fax	: (02)	9809 409	5		
Relinquished by	tal jug	Sigi محر يوم Cia	ned:	per-		Date & T	Fime:	c/9/11	٦ 	leceived	By: (Hie		Date 8	Time: <u>26</u>	/9/11	7:20	
Reinquisited by	·						ime:		H		гву: v			Date &	a time:			
RHC	0.4-05	62	1															
DUM	1.1-1.7	00 7 11	a.													Page _ 5	of _ 5 _	
SHS	1.1.1.2	- 07	J															

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

62422

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kate Sargent

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 4/10/11 4/10/11 1 Date of Preliminary Report: Not Issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

Alana Nancy Zhang

Chemist

72628.00, Parramatta

/

26/09/2011

28 Soils

21/09/2011

Rhian Morgan Reporting Supervisor

Sarlamis Inorganics Supervisor

Lulu Guo Approved Signatory

Envirolab Reference: **Revision No:**

62422 R 00

VOCs in soil				
Our Reference:	UNITS	62422-2	62422-10	62422-19
Your Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil
 Date extracted	_	27/09/2011	27/09/2011	27/09/2011
Date analysed	_	28/09/2011	28/09/2011	28/09/2011
Dichlorodifluoromethane	ma/ka	~1	~1	-1
Chloromothana	mg/kg	-1	~1	<1
	mg/kg		<1	<1
Vinyi Chionae	mg/kg	<1	<1	<1
Bromometriane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1
chloroform	mg/kg	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1
chlorobenzene	mg/ka	<1	<1	<1
Ethylbenzene	ma/ka	<1	<1	<1
bromoform	ma/ka	<1	<1	<1
m+n-xvlene	ma/ka	<2	<2	2
styrene	ma/ka	~1	~1	-
1 1 2 2-tetrachloroethane	ma/ka	~1	~1	~1
o-Xvlene	ma/ka	<1	~1	~1
1.2.3-trichloropropane	ma/ka	<1	<1	<1
.,_,e			- 1	

VOCs in soil				
Our Reference:	UNITS	62422-2	62422-10	62422-19
Your Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil
isopropylbenzene	mg/kg	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluorometha	%	106	104	100
Surrogate aaa-Trifluorotoluene	%	136	134	116
Surrogate Toluene-d8	%	110	109	106
Surrogate 4-Bromofluorobenzene	%	100	101	100

vTRH&BTEX in Soil						
Our Reference:	UNITS	62422-2	62422-6	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW01/2.5-2.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	136	126	134	125	116

vTRH & BTEX in Soil		
Our Reference:	UNITS	62422-27
Your Reference		Dup02
Date Sampled		19/09/2011
Type of sample		Soil
Date extracted	-	27/09/2011
Date analysed	-	28/09/2011
vTRHC6 - C9	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	127

sTRH in Soil (C10-C36)						
Our Reference:	UNITS	62422-2	62422-6	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW01/2.5-2.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC∞ - C∞	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	91	91	92	92

sTRH in Soil (C10-C36)		
Our Reference:	UNITS	62422-27
Your Reference		Dup02
Date Sampled		19/09/2011
Type of sample		Soil
Date extracted	-	27/09/2011
Date analysed	-	28/09/2011
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
Surrogate o-Terphenyl	%	92

PAHs in Soil						
Our Reference:	UNITS	62422-2	62422-6	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW01/2.5-2.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Naphthalene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	3.1	0.4	<0.1	<0.1	0.1
Anthracene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	3.1	0.7	0.2	<0.1	0.2
Pyrene	mg/kg	2.7	0.6	0.2	<0.1	0.2
Benzo(a)anthracene	mg/kg	1.4	0.3	0.1	<0.1	<0.1
Chrysene	mg/kg	1.1	0.3	0.1	<0.1	0.1
Benzo(b+k)fluoranthene	mg/kg	1.6	0.4	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	1.0	0.25	0.08	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	103	103	93	95	96

PAHs in Soil		
Our Reference:	UNITS	62422-27
Your Reference		Dup02
Date Sampled		19/09/2011
Type of sample		Soil
Date extracted	-	27/09/2011
Date analysed	-	28/09/2011
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Surrogate p-Terphenyl-d14	%	94

Organochlorine Pesticides in soil					
Our Reference:	UNITS	62422-2	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	01/10/2011	01/10/2011	01/10/2011	01/10/2011
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	84	86	86

Organophosphorus Pesticides					
Our Reference:	UNITS	62422-2	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	01/10/2011	01/10/2011	01/10/2011	01/10/2011
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	84	86	86

PCBs in Soil					
Our Reference:	UNITS	62422-2	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Date analysed	-	01/10/2011	01/10/2011	01/10/2011	01/10/2011
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	84	86	86

Total Phenolics in Soil					
Our Reference:	UNITS	62422-2	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/09/2011	29/09/2011	29/09/2011	29/09/2011
Date analysed	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

Acid Extractable metals in soil						
Our Reference:	UNITS	62422-2	62422-6	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW01/2.5-2.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Arsenic	mg/kg	4	<4	<4	<4	<4
Cadmium	mg/kg	10	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	120	6	3	2	54
Copper	mg/kg	240	9	3	3	24
Lead	mg/kg	150	51	4	5	71
Mercury	mg/kg	0.7	0.2	<0.1	<0.1	0.3
Nickel	mg/kg	100	4	3	2	14
Zinc	mg/kg	160	46	5	5	100

Acid Extractable metals in soil		
Our Reference:	UNITS	62422-27
Your Reference		Dup02
Date Sampled		19/09/2011
Type of sample		Soil
Date digested	-	27/09/2011
Date analysed	-	27/09/2011
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.5
Chromium	mg/kg	4
Copper	mg/kg	3
Lead	mg/kg	11
Mercury	mg/kg	<0.1
Nickel	mg/kg	2
Zinc	mg/kg	9

Miscellaneous Inorg - soil					
Our Reference:	UNITS	62422-2	62422-5	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW01/2.0-2.1	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011
pH 1:5 soil:water	pH Units	9.8	9.5	9.0	9.5
Chloride, Cl 1:5 soil:water	mg/kg	28	[NA]	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	310	[NA]	[NA]	[NA]

ESP/CEC		
Our Reference:	UNITS	62422-2
Your Reference		MW01/0.5-0.6
Date Sampled		19/09/2011
Type of sample		Soil
ExchangeableCa	meq/100g	30
ExchangeableK	meq/100g	0.44
Exchangeable Mg	meq/100g	1.2
ExchangeableNa	meq/100g	0.94
Cation Exchange Capacity	meq/100g	33
ESP	%	2.9

1	Texture and Salinity					
			00400.0	CO 400 F	00400.44	00400 40
	Our Reference:	UNITS	62422-2	62422-5	62422-11	62422-19
	Your Reference		MW01/0.5-0.6	MW01/2.0-2.1	MW02/1.0-1.1	MW03/0.5-0.6
	Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
	Type of sample		Soil	Soil	Soil	Soil
	Electrical Conductivity 1:5 soil:water	µS/cm	310	620	80	240
	Texture Value		10	[NA]	[NA]	[NA]
	Texture	-	LOAM	[NA]	[NA]	[NA]
	ECe	dS/m	3.0	[NA]	[NA]	[NA]
	Class	-	SLIGHTLY SALINE	[NA]	[NA]	[NA]

Moisture						
Our Reference:	UNITS	62422-2	62422-6	62422-10	62422-11	62422-19
Your Reference		MW01/0.5-0.6	MW01/2.5-2.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
Date Sampled		19/09/2011	19/09/2011	19/09/2011	19/09/2011	20/09/2011
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/09/2011	27/09/2011	27/09/2011	27/09/2011	27/09/2011
Date analysed	-	28/09/2011	28/09/2011	28/09/2011	28/09/2011	28/09/2011
Moisture	%	14	11	4.1	3.8	8.9

Moisture		
Our Reference:	UNITS	62422-27
Your Reference		Dup02
Date Sampled		19/09/2011
Type of sample		Soil
Date prepared	-	27/09/2011
Date analysed	-	28/09/2011
Moisture	%	4.2

Asb	estos ID - soils					
Ou	ur Reference:	UNITS	62422-2	62422-10	62422-11	62422-19
Yo	our Reference		MW01/0.5-0.6	MW02/0.5-0.6	MW02/1.0-1.1	MW03/0.5-0.6
C	Date Sampled		19/09/2011	19/09/2011	19/09/2011	20/09/2011
Ту	pe of sample		Soil	Soil	Soil	Soil
D	ate analysed	-	30/09/2011	30/09/2011	30/09/2011	30/09/2011
Sam	ple mass tested	g	30.21g	Approx 35g	Approx 35g	Approx 35g
Sam	nple Description	-	Brown fine- grained soil	Brown fine- grained soil	Brown fine- grained soil	Brown fine- grained soil
Asb	estos ID in soil	-	Chrysotile asbestos detected Amosite asbestos detected	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Tr	ace Analysis	-	Trace respirable fibres detected	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected

Method ID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 21st ED 5530 D.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 21st ED, 4500-H+.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 21st ED, 4110 -B.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA 21st ED 2510 and Rayment & Higginson.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

QUALITY CONTROL UNITS PQL METHOD Blank Duplicate Sm# Duplicate results Spike Sm# Spike % Recovery VOCs in soil - - 27/09/2 62422-10 27/09/2011 27/09/2011 LCS-1 27/09/20 Date extracted - - 28/09/2 62422-10 28/09/2011 28/09/2011 LCS-1 28/09/20 Dichlorodifluoromethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Dichlorodifluoromethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Vinyl Chloride mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Bromomethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Bromomethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Chloroethane mg/kg 1 Org-014 <1 6242	
VOCs in soil Image: Construct of the sector of	.y
Date extracted - L 27/09/2 011 62422-10 28/09/2 011 27/09/2011 27/09/2011 LCS-1 27/09/2010 Date analysed - - 28/09/2 011 62422-10 28/09/2011 28/09/2011 LCS-1 28/09/2010 Dichlorodifluoromethane mg/kg 1 Org-014 <1	
Date analysed - 28/09/2 011 62422-10 28/09/2011 28/09/2011 LCS-1 28/09/2012 Dichlorodifluoromethane mg/kg 1 Org-014 <1	2011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2011
Chloromethanemg/kg1Org-014<1 $62422-10$ <1 <1[NR][NR]Vinyl Chloridemg/kg1Org-014<1	!]
Vinyl Chloride mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Bromomethane mg/kg 1 Org-014 <1	ː]
Bromomethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Chloroethane mg/kg 1 Org-014 <1	ː]
Chloroethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] Trichlorofluoromethane mg/kg 1 Org-014 <1	ː]
Trichlorofluoromethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] 1,1-Dichloroethene mg/kg 1 Org-014 <1	[]
1,1-Dichloroethene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	[]
	ː]
trans-1,2-dichloroethene mg/kg 1 Urg-014 <1 62422-10 <1 <1 [NR]	[]
1,1-dichloroethane mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 106%	%
cis-1,2-dichloroethene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	[]
bromochloromethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	ː]
chloroform mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 98%	6
2,2-dichloropropane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	ː]
1,2-dichloroethane mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 93%	6
1,1,1-trichloroethane mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 86%	6
1,1-dichloropropene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	ː]
Cyclohexane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	ː]
carbon tetrachloride mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	!]
Benzene mg/kg 0.2 Org-014 <0.2 62422-10 <0.2 [NR] [NR]	!]
dibromomethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	ː]
1,2-dichloropropane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	[]
trichloroethene mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 92%	6
bromodichloromethane mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 96%	6
trans-1,3- mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] dichloropropene <1]
cis-1,3-dichloropropene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	:]
1,1,2-trichloroethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	:]
Toluene mg/kg 0.5 Org-014 <0.5 62422-10 <0.5 <0.5 [NR] [NR]	[]
1,3-dichloropropane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	[]
dibromochloromethane mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 93%	6
1,2-dibromoethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	[]
tetrachloroethene mg/kg 1 Org-014 <1 62422-10 <1 <1 LCS-1 95%	6
1,1,1,2- tetrachloroethane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]]
chlorobenzene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	[]
Ethylbenzene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	[]
bromoform mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	[]
m+p-xylene mg/kg 2 Org-014 <2 62422-10 <2 <2 [NR] [NR]	[]
styrene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	[]
1,1,2,2- mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR] tetrachloroethane 1 Org-014 <1]
0-Xylene mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR]	[]
1,2,3-trichloropropane mg/kg 1 Org-014 <1 62422-10 <1 <1 [NR] [NR]	[]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		
isopropylbenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	62422-10	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		Org-014	97	62422-10	104 100 RPD: 4	LCS-1	101%
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-014	133	62422-10	134 116 RPD:14	LCS-1	117%
Surrogate Toluene-d8	%		Org-014	106	62422-10	109 104 RPD:5	LCS-1	104%
Surrogate 4- Bromofluorobenzene	%		Org-014	100	62422-10	101 101 RPD:0	LCS-1	101%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
								Recovery
vTRH&BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	-			27/09/2 011	62422-10	27/09/2011 27/09/2011	LCS-1	27/09/2011
Date analysed	-			28/09/2 011	62422-10	28/09/2011 28/09/2011	LCS-1	28/09/2011
vTRHC6 - C9	mg/kg	25	Org-016	<25	62422-10	<25 <25	LCS-1	102%
Benzene	mg/kg	0.2	Org-016	<0.2	62422-10	<0.2 <0.2	LCS-1	94%
Toluene	mg/kg	0.5	Org-016	<0.5	62422-10	<0.5 <0.5	LCS-1	110%
Ethylbenzene	mg/kg	1	Org-016	<1	62422-10	<1 <1	LCS-1	102%
m+p-xylene	mg/kg	2	Org-016	<2	62422-10	<2 <2	LCS-1	103%
o-Xylene	mg/kg	1	Org-016	<1	62422-10	<1 <1	LCS-1	109%
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	133	62422-10	134 127 RPD:5	LCS-1	130%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sTRH in Soil (C10-C36)						Base II Duplicate II % RPD		Recovery
Date extracted	-			27/09/2 011	62422-10	27/09/2011 27/09/2011	LCS-1	27/09/2011
Date analysed	-			28/09/2 011	62422-10	28/09/2011 28/09/2011	LCS-1	28/09/2011
TRHC 10 - C 14	mg/kg	50	Org-003	<50	62422-10	<50 <50	LCS-1	99%
TRHC 15 - C28	mg/kg	100	Org-003	<100	62422-10	<100 <100	LCS-1	98%
TRHC29 - C36	mg/kg	100	Org-003	<100	62422-10	<100 <100	LCS-1	92%
Surrogate o-Terphenyl	%		Org-003	93	62422-10	91 91 RPD: 0	LCS-1	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
QUALITYCONTROL PAHs in Soil Date extracted	UNITS	PQL	METHOD	Blank 27/09/2	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011	Spike Sm#	Spike % Recovery 27/09/2011
QUALITYCONTROL PAHs in Soil Date extracted Date analysed	UNITS - -	PQL	METHOD	Blank 27/09/2 011 28/09/2	Duplicate Sm# 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011	Spike Sm# LCS-3 LCS-3	Spike % Recovery 27/09/2011 28/09/2011
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene	UNITS - - ma/kg	PQL 0.1	METHOD Org-012	Blank 27/09/2 011 28/09/2 011 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100%
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene	UNITS - mg/kg	PQL 0.1	METHOD Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100%
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene	UNITS - mg/kg mg/kg	PQL 0.1 0.1	METHOD Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 LCS-3 [NR]	Spike % Recovery 27/09/2011 28/09/2011 100% [NR]
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene	UNITS - mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 LCS-3 [NR] [NR]	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] [NR]
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene	UNITS - mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 [NR] [NR] LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] [NR] 104%
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Fluorene Phenanthrene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II % RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 [NR] [NR] LCS-3 LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] [NR] 104% 105%
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 [NR] [NR] LCS-3 LCS-3 [NR]	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] 104% 105% [NR]
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II % RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 LCS-3 [NR] LCS-3 [NR] LCS-3 [NR] LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] 104% 105% [NR] 102%
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 0.1 RPD: 67 0.2 0.1 RPD: 67	Spike Sm# LCS-3 LCS-3 LCS-3 [NR] LCS-3 LCS-3 [NR] LCS-3 LCS-3 LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] 104% 105% [NR] 102% 1102% 110%
QUALITYCONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II % RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 0.1 RPD: 67 0.2 0.1 RPD: 67 0.1 <0.1	Spike Sm# LCS-3 LCS-3 [NR] [NR] LCS-3 [NR] LCS-3 [NR] LCS-3 [NR]	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] 104% 105% [NR] 102% 110% [NR]
QUALITY CONTROL PAHs in Soil Date extracted Date analysed Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	METHOD Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset Org-012 subset	Blank 27/09/2 011 28/09/2 011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Duplicate Sm# 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10 62422-10	Duplicate results Base II Duplicate II %RPD 27/09/2011 27/09/2011 28/09/2011 28/09/2011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.1 RPD: 67 0.2 0.1 RPD: 67 0.1 <0.1 <0.1 <0.1	Spike Sm# LCS-3 LCS-3 LCS-3 [NR] LCS-3 LCS-3 [NR] LCS-3 LCS-3 [NR] LCS-3	Spike % Recovery 27/09/2011 28/09/2011 100% [NR] 104% 105% [NR] 102% 110% [NR] 102% 110%

Client Reference: 72628.00, Parramatta								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	62422-10	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	62422-10	0.08 <0.05	LCS-3	67%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	107	62422-10	93 94 RPD:1	LCS-3	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		Recovery
Date extracted	-			27/09/2 011	62422-10	27/09/2011 27/09/2011	LCS-5	27/09/2011
Date analysed	-			30/09/2 011	62422-10	01/10/2011 01/10/2011	LCS-5	01/10/2011
НСВ	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	112%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	118%
Heptachlor	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	99%
delta-BHC	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	100%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	108%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	114%
Dieldrin	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	106%
Endrin	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	104%
pp-DDD	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	130%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	LCS-5	105%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-005	87	62422-10	84 85 RPD:1	LCS-5	93%

				. 12	.020.00, 1 ana	inatta		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II %RPD		
Date extracted	-			27/09/2 011	62422-10	27/09/2011 27/09/2011	LCS-5	27/09/2011
Date analysed	-			01/10/2 011	62422-10	01/10/2011 01/10/2011	LCS-5	01/10/2011
Diazinon	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	LCS-5	109%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	LCS-5	122%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	62422-10	<0.1 <0.1	LCS-5	114%
Surrogate TCLMX	%		Org-008	87	62422-10	84 85 RPD:1	LCS-5	92%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		,
Date extracted	-			27/09/2 011	62422-10	29/09/2011 29/09/2011	LCS-5	27/09/2011
Date analysed	-			01/10/2 011	62422-10	01/10/2011 01/10/2011	LCS-5	01/10/2011
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Arochlor 1221*	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	LCS-5	127%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	62422-10	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	87	62422-10	84 85 RPD:1	LCS-5	110%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II % RPD		
Date extracted	-			29/09/2 011	[NT]	[NT]	LCS-1	29/09/2011
Date analysed	-			30/09/2 011	[NT]	[NT]	LCS-1	30/09/2011
Total Phenolics (as Phenol)	mg/kg	5	Inorg-030	ත්	[NT]	[NT]	LCS-1	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recoverv
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Datedigested	-			27/09/2 011	62422-10	27/09/2011 27/09/2011	LCS-1	27/09/2011
Date analysed	-			27/09/2 011	62422-10	27/09/2011 27/09/2011	LCS-1	27/09/2011
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	62422-10	<4 <4	LCS-1	100%
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	62422-10	<0.5 <0.5	LCS-1	107%
L		1				1		

CI	ient	Reference:	
----	------	------------	--

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	62422-10	3 4 RPD:29	LCS-1	105%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	62422-10	3 4 RPD:29	LCS-1	103%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	62422-10	4 4 RPD:0	LCS-1	101%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	62422-10	<0.1 <0.1	LCS-1	111%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	62422-10	3 2 RPD: 40	LCS-1	105%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	62422-10	5 5 RPD:0	LCS-1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			28/09/2 011	[NT]	[NT]	LCS-1	28/09/2011
Date analysed	-			28/09/2 011	[NT]	[ТИ]	LCS-1	28/09/2011
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-1	103%
Chloride, Cl 1:5 soil:water	mg/kg	2	Inorg-081	~2	[NT]	[ТИ]	LCS-1	100%
Sulphate, SO4 1:5 soil:water	mg/kg	2	Inorg-081	~2	[NT]	[ТИ]	LCS-1	116%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
ESP/CEC						Base II Duplicate II %RPD		
Exchangeable Ca	meq/100 g	0.01	Metals-009	<0.01	[NT]	[TN]	LCS-1	97%
ExchangeableK	meq/100 g	0.01	Metals-009	<0.01	[NT]	[ТИ]	LCS-1	100%
ExchangeableMg	meq/100 g	0.01	Metals-009	<0.01	[NT]	[ТИ]	LCS-1	105%
ExchangeableNa	meq/100 g	0.01	Metals-009	<0.01	[NT]	[TM]	LCS-1	93%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	[NT]	[NT]	[NR]	[NR]
ESP	%	1	Metals-009	<1.0	[NT]	[NT]	[NR]	[NR]

CI	ient	Refere	ence:

QUALITY CONTROLUNITSPQLMETHODBlankDuplicate Sm#Duplicate resultsSpike Sm#Spike Rm#Texture and SalinityElectrical Conductivity 1:5 soil:waterµS/cm1Inorg-002<1[NT][NT]LCS-1Texture ValueInorg-002[NT][NT][NT][NT][NR]	ike % covery 107% [NR] [NR] [NR]
Texture and Salinity Base II Duplicate II % RPD Electrical Conductivity 1:5 soil:water µS/cm 1 Inorg-002 <1	107% [NR] [NR] [NR]
Electrical Conductivity µS/cm 1 Inorg-002 <1 [NT] [NT] LCS-1 1:5 soil:water Inorg-002 [NT] [NT] [NT] [NR] Texture Value Inorg-002 [NT] [NT] [NR]	107% [NR] [NR] [NR]
Texture Value Inorg-002 [NT] [NT] [NT] [NR]	[NR] [NR] [NR]
	[NR] [NR]
T FCP I dS/m I O I I INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI INTLI	[NR]
Class - INTI INTI INTI INTI	[]
QUALITY CONTROL UNITS PQL METHOD Blank	
Moisture	
Date prepared - 26/09/2	
011	
Date analysed - 27/09/2	
Moisture % 0.1 Inora-008 [NT]	
QUALITY CONTROL UNITS PQL METHOD Blank	
Asbestos ID - soils	
Date analysed - [NT]	
QUALITYCONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recovery	
VOCs in soil Base + Duplicate + % RPD	
Date extracted - [NT] [NT] 62422-19 27/09/2011	
Date analysed - [NT] [NT] 62422-19 28/09/2011	
Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR]	
Chloromethane mg/kg [NT] [NR] [NR]	
Vinyl Chloride mg/kg [NT] [NR] [NR]	
Bromomethane mg/kg [NT] [NR] [NR]	
Chloroethane mg/kg [NT] [NR] [NR]	
Trichlorofluoromethane mg/kg [NT] [NT] [NR] [NR]	
1,1-Dichloroethene mg/kg [NT] [NT] [NR] [NR]	
trans-1,2-dichloroethene mg/kg [NT] [NT] [NR] [NR]	
1,1-dichloroethane mg/kg [NT] [NT] 62422-19 121%	
cis-1,2-dichloroethene mg/kg [NT] [NR] [NR]	
bromochloromethane mg/kg [NT] [NT] [NR] [NR]	
chloroform mg/kg [NT] [NT] 62422-19 112%	
2,2-dichloropropane mg/kg [NT] [NT] [NR] [NR]	
1,2-dichloroethane mg/kg [NT] [NT] 62422-19 108%	
1,1,1-trichloroethane mg/kg [NT] [NT] 62422-19 91%	
1,1-dichloropropene mg/kg [NT] [NT] [NR] [NR]	
Cyclohexane mg/kg [NT] [NT] [NR] [NR]	
carbon tetrachloride mg/kg [NT] [NT] [NR] [NR]	
Benzene mg/kg [NT] [NR] [NR]	
dibromomethane mg/kg [NT] [NR] [NR]	
1,2-dichloropropane mg/kg [NT] [NT] [NR] [NR]	
trichloroethene mg/kg [NT] [NT] 62422-19 103%	
bromodichloromethane mg/kg [NT] [NT] 62422-19 110%	
trans-1,3-dichloropropene mg/kg [NT] [NT] [NR] [NR]	

		Client Referenc	e: 72628.00, Parrama	atta	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
VOCs in soil			Base + Duplicate + %RPD		
cis-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromochloromethane	mg/kg	[NT]	[NT]	62422-19	109%
1,2-dibromoethane	mg/kg	[NT]	[NT]	[NR]	[NR]
tetrachloroethene	mg/kg	[NT]	[NT]	62422-19	105%
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%	[NT]	[NT]	62422-19	104%
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	62422-19	140%
Surrogate Toluene-d8	%	[NT]	[NT]	62422-19	104%
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	62422-19	101%

		Client Referenc	e: 72628.00, Parrama	atta	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH&BTEX in Soil			Base + Duplicate + % RPD		
Date extracted	-	[NT]	[NT]	62422-19	27/09/2011
Date analysed	-	[NT]	[NT]	62422-19	28/09/2011
vTRHC6 - C9	mg/kg	[NT]	[NT]	62422-19	95%
Benzene	mg/kg	[NT]	[NT]	62422-19	87%
Toluene	mg/kg	[NT]	[NT]	62422-19	101%
Ethylbenzene	mg/kg	[NT]	[NT]	62422-19	96%
m+p-xylene	mg/kg	[NT]	[NT]	62422-19	96%
o-Xylene	mg/kg	[NT]	[NT]	62422-19	103%
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	62422-19	117%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
sTRH in Soil (C10-C36)			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	62422-19	27/09/2011
Date analysed	-	[NT]	[NT]	62422-19	28/09/2011
TRHC 10 - C14	mg/kg	[NT]	[NT]	62422-19	100%
TRHC 15 - C28	mg/kg	[NT]	[NT]	62422-19	99%
TRHC29 - C36	mg/kg	[NT]	[NT]	62422-19	91%
Surrogate o-Terphenyl	%	[NT]	[NT]	62422-19	92%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	62422-19	27/09/2011
Date analysed	-	[NT]	[NT]	62422-19	28/09/2011
Naphthalene	mg/kg	[NT]	[NT]	62422-19	92%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	62422-19	102%
Phenanthrene	mg/kg	[NT]	[NT]	62422-19	96%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	62422-19	82%
Pyrene	mg/kg	[NT]	[NT]	62422-19	90%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	62422-19	94%
Benzo(b+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	62422-19	111%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%	[NT]	[NT]	62422-19	94%

		Client Referenc	e: 72628.00, Parrama	atta	
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	62422-19	27/09/2011
Date analysed	-	[NT]	[NT]	62422-19	01/10/2011
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	62422-19	97%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	62422-19	104%
Heptachlor	mg/kg	[NT]	[NT]	62422-19	98%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	62422-19	87%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	62422-19	95%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	62422-19	100%
Dieldrin	mg/kg	[NT]	[NT]	62422-19	93%
Endrin	mg/kg	[NT]	[NT]	62422-19	93%
pp-DDD	mg/kg	[NT]	[NT]	62422-19	116%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	62422-19	91%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	62422-19	84%

		Client Referenc	e: 72628.00, Parrama	atta	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	62422-19	27/09/2011
Date analysed	-	[NT]	[NT]	62422-19	01/10/2011
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	62422-19	99%
Fenitrothion	mg/kg	[NT]	[NT]	62422-19	109%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	62422-19	104%
Surrogate TCLMX	%	[NT]	[NT]	62422-19	84%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	62422-19	27/09/2011
Date analysed	-	[NT]	[NT]	62422-19	01/10/2011
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1221*	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	62422-19	114%
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	62422-19	92%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	[N1]	[N1]	62422-19	27/09/2011
Date analysed	-	[N1]	[N1]	62422-19	27/09/2011
Arsenic	mg/kg	[N1]	[N1]	62422-19	95%
Cadmium	mg/kg	[N1]	[N1]	62422-19	91%
Chromium	mg/kg	[NT]	[N1]	62422-19	121%
Copper	mg/kg	[NT]	[NT]	62422-19	115%
Lead	mg/kg	[NT]	[NT]	62422-19	80%
Mercury	mg/kg	[NT]	[NT]	62422-19	115%
Nickel	mg/kg	[NT]	[NT]	62422-19	106%
Zinc	mg/kg	[NT]	[NT]	62422-19	74%
Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 30-40g of sample in its own container.

Sample 62422-2; Loose bundles of chrysotile and amosite asbestos identifed within the sample, and also embedded in several fragments of fibre cement (total weight 6.6041g). It is estimated that the fibre cement contains up to 30% asbestos fibres by weight. This calculates to 1.9812g of asbestos fibres, which in 30.21g of soil is 65.57g/kg (i.e. > reporting limit for the method of 0.1g/kg).

Asbestos ID was analysed by Approved Identifier:	Alex Tam
Asbestos ID was authorised by Approved Signatory:	Lulu Guo

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Project Name:	Contamination Assessment – Parramatta	To: Envirolab Services Pty Ltd
Project No:	72628.00 Sampler: Kate Sargent	12 Ashley Street, CHATSWOOD NSW 2067
Project Mgr:	PGMob. Phone: 0439 498 513	Attn: Tania Notaras
Email:	kate.sargent@douglaspartners.com.au	Phone: 9910 6200 Fax: 9910 6201
Date Required:	Standard Lab Quote No	Email: enquires@envirolabservices.com.au

Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W - water	Container type	Heavy Metais	BTEX/ TPH	OCP/ OPP	PCB	PAH	Phenol	Asbestos	Textural Classification	Ha	ËC	Sulphate / Chloride	ЦSР	VOC
MW01	0.1-0.2		19/9/11	s	G/P													-
	0.5-0.6	2	19/9/11	s	G/P	\times	\times	\times	\times	\times	×	\times	×	×	\times	\times	\times	X
	1.0-1.2	3	1 9/9/11	S	G/P													
	1.5-1.6	4	19/9/11	s	G/P													
	2.0-2.1	5	19/9/11	s	G/P									Х	\times			
	2.5-2.6	6	19/9/11	s	G/P	X	\times			\times								
	3.0-3.1	7	19/9/11	s	G/P													
	4.0-4.1	8	19/9/11	s	G/P													
MW02	0.0-0.1	9	19/9/11	s	G/P					-								
	0.5-0.6	10	19/9/11	s	G/P	\mathbf{X}	\times	\times	\times	\times	\times	Х						\times
	1.0-1.1	11	19/9/11	S	G/P	\times	\times	Ķ	\times	\times	\times	\times		\times	\times			
	1.5-1.6	12	19/9/11	S	G/P													
Lab Report No													Pho	ne: (02)	9809 066	6		<u>'</u>
Send Results t	o: Dougias	Partner	s Address:	<u>_ 96 H</u>	ermitage	Road, V	Nest Ryd	e 2114					/ Fax	. (02) 9809 409)5		
Relinquished by	Kali Jaiji	Sigr	ned:	Ejen	+	Date & T	//چ : Time	19/11	R	eceived	By:	A	C	Date 8	& Time:			
Relinquished by	: 7	Sigr	ned: 🔶 🖓			Date & 1	îme:		R	eceived	By:	1		Date &	& Time:	- 10 ⁻ 514		

Project Name:	Contamination Assessment – Parramatta	To: Envirolab Services Pty Ltd
Project No:	72628.00 Sampler: Kate Sargent	12 Ashley Street, CHATSWOOD NSW 2067
Project Mgr:	PGMob. Phone: 0439 498 513	Attn: Tania Notaras
Email:	kate.sargent@douglaspartners.com.au	Phone: 9910 6200 Fax: 9910 6201
Date Required:	Standard Lab Quote No	Email: enquires@envirolabservices.com.au

Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W - water	Container type	Heavy Metals	втех/ трн	оср/ Орр	РСВ	РАН	Phenol	Asbestos	Textural Classification	Hd	EC	Sulphate / Chloride	ESP	VOCS
MW02	2.0-2.1	3	19/9/11	s	G/P				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	2.5-2.6	14-	19/9/11	s	G/P													
	3.0-3.1	15	19/9/11	s	G/P										1997 Ali - I an an U ARA - A ine Ang ang ang ang ang ang ang ang ang ang a			
	4.0-4.1	6)	19/9/11	s	G/P						, ,							
	5.0-5.1	17	19/9/11	s	G/P									··· •···				
MW03	0.0-0.1	18	20/9/11	S	G/P													**************************************
	0.5-0.6	19	20/9/11	S	G/P	X	X	\times	\times	\times	\times	\times		\times	\times			X
	1.0-1.1	20	20/9/11	s	G/P													
	1.5-1.6	21	20/9/11	s	G/P													
	2.0-2.1	22	20/9/11	s	G/P													
	3.0-3.1	23	20/9/11	s	G/P													
	4.0-4.1	24	20/9/11	s	G/P													
Lab Report N Send Results Relinquished b	o to: Dougla V: <i>LaL:</i> Su	as Partr	ners Addre	ess:	96 Herm	iitage R Da	oad, We te & Tim	st Ryde 2 e: _2//	114 57/11	F	eceive	d By:		Phone Fax:	e: (02) 9 (02) 9 Date & 1	809 0666 809 4095 Fime:		
Relinquished b	y: /	5	Signed:	19		Da	te & Tim	e:		F	leceive	d By:		<u> </u>	Date & 1	lime:		

• . `

Project Name:	Contamination Assessment – Parramatta	To: Envirolab Services Pty Ltd
Project No:	72628.00 Sampler: Kate Sargent	12 Ashley Street, CHATSWOOD NSW 2067
Project Mgr:	PGMob. Phone: 0439 498 513	Attn: Tania Notaras
Email:	kate.sargent@douglaspartners.com.au	Phone: 9910 6200 Fax: 9910 6201
Date Required:	Standard Lab Quote No	Email: enquires@envirolabservices.com.au

Sample ID	Sample Depth	Lab ID	Sampling Date	S - soll W - water	Container type	Heavy Metals	втех/ трн	OCP/ OPP	PCB	РАН	Phenol	Asbestos	Textural Classification	Hq	EC	Sulphate / Chloride	ESP
MW03	5.0-5.1	25	20/9/11	S	G/P												
Dup01		26	19/9/11	S	G/P												
Dup02		27	19/9/11	s	G/P	\times	\times			\times							
Dup03		28	20/9/11	S	G/P												
										,							
Lab Report No		<u> </u>										<u>I</u>	Pho	ne: (02)	9809 066	<u>_</u>	
Send Results t	o: Douglas	Partne	rs Address:	<u>_9</u> 6 H	ermitage	e Road, '	West Ryd	de 2114					/ / Fax	: (02)	9809 409	-	
Relinquished by	Lat Juya	ut Sig	ned: "	y wind	1	Date &	Time:	1/9/11	R	eceived	By:	Į.		Date &	Time:		
Relinquished by	: /	Sig	ned:			Date &	Time:	··	F	eceived	By:	///	J	Date 8	Time:		
<u> </u>							· ·										······································

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

62962

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kate Sargent

Sample log in details:

Your Reference:	72628.00, Parramatta						
No. of samples:	4 waters						
Date samples received / completed instructions received	06/10/11	/	06/10/11				

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/10/11
 /
 10/10/11

 Date of Preliminary Report:
 Not Issued
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.
 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

-Mana Nancy Zhang Chemist

Gic

Giovanni Agosti Technical Manager

Jeremy Faircloth Chemist

Envirolab Reference: 62962 Revision No: R 00 Page 1 of 18

Client Reference: 72628.00, Parramatta

VOCs in water	LINITS	62962-1	62062-2	62062-3
Your Reference		MW01	02902-2 MW02	02902-3 MW03
Date Sampled		05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water
 Date extracted	_	07/10/2011	07/10/2011	07/10/2011
Date analysed	_	10/10/2011	10/10/2011	10/10/2011
Dichlorodifluoromethane	ug/l	<10	~10	~10
Chloromothana	µg/∟	<10	<10	<10
Visul Chlorida	µg/∟	<10	<10	<10
	μg/L	<10	<10	<10
Biomometriane	μg/L	<10	<10	<10
	µg/L	<10	<10	<10
Irichlorofluoromethane	µg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1
I rans-1,2-dichloroethene	µg/L	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1
Chloroform	µg/L	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1
Benzene	µg/L	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1
Tetrachloroethene	µa/L	<1	<1	<1
1,1,1,2-tetrachloroethane	ua/L	<1	<1	<1
Chlorobenzene	ua/L	<1	<1	<1
Ethylbenzene	ua/l	<1	<1	<1
Bromoform	ua/l	<1	<1	<1
m+n-xvlene	ug/l	~	2	~2
Styrene	µ9/⊏ ua/l	~1	~	~
1 1 2 2-tetrachloroethane	µ9/⊏ uc/l	-1	~1	~1
	µ9/⊏ uo/l	_1	~1	_1
1.2.3-trichloropropage	µ9/⊏	-1	-1	~1
r,z,o-urchioropropane	µg/∟	< I	< I	< I

Client Reference:

VOCs in water				
Our Reference:	UNITS	62962-1	62962-2	62962-3
Your Reference		MW01	MW02	MW03
Date Sampled		05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water
Isopropylbenzene	µg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	108	108
Surrogate toluene-d8	%	101	101	101
Surrogate 4-BFB	%	112	112	113

Client Reference: 72628.00, Parramatta

_						
	vTRH & BTEX in Water					
	Our Reference:	UNITS	62962-1	62962-2	62962-3	62962-4
	Your Reference		MW01	MW02	MW03	DUP01
	Date Sampled		05/10/2011	05/10/2011	05/10/2011	05/10/2011
	Type of sample		water	water	water	water
ľ	Date extracted	-	07/10/2011	07/10/2011	07/10/2011	07/10/2011
	Date analysed	-	10/10/2011	10/10/2011	10/10/2011	10/10/2011
	TRHC6 - C9	µg/L	<10	<10	<10	<10
	Benzene	µg/L	<1	<1	<1	<1
	Toluene	µg/L	<1	<1	<1	<1
	Ethylbenzene	µg/L	<1	<1	<1	<1
	m+p-xylene	µg/L	<2	<2	<2	<2
	o-xylene	µg/L	<1	<1	<1	<1
	Surrogate Dibromofluoromethane	%	108	108	108	103
	Surrogate toluene-d8	%	101	101	101	106
	Surrogate 4-BFB	%	112	112	113	97

Client Reference: 72628.00, Parramatta

sTRH in Water (C10-C36)					
Our Reference:	UNITS	62962-1	62962-2	62962-3	62962-4
Your Reference		MW01	MW02	MW03	DUP01
Date Sampled		05/10/2011	05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water	water
Date extracted	-	07/10/2011	07/10/2011	07/10/2011	07/10/2011
Date analysed	-	10/10/2011	10/10/2011	10/10/2011	10/10/2011
TRHC 10 - C14	μg/L	<50	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	101	106	102	78

Client Reference:

PAHs in Water				
Our Reference:	UNITS	62962-1	62962-2	62962-3
Your Reference		MW01	MW02	MW03
Date Sampled		05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water
Date extracted	-	07/10/2011	07/10/2011	07/10/2011
Date analysed	-	07/10/2011	07/10/2011	07/10/2011
Naphthalene	µg/L	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1
Fluorene	µg/L	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1
Anthracene	µg/L	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1
Pyrene	µg/L	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1
Chrysene	µg/L	<1	<1	<1
Benzo(b+k)fluoranthene	µg/L	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1
Surrogate p-Terphenyl-d14	%	119	121	120

Client Reference:

OCP in water				
Our Reference:	UNITS	62962-1	62962-2	62962-3
Your Reference		MW01	MW02	MW03
Date Sampled		05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water
Date extracted	-	07/10/2011	07/10/2011	07/10/2011
Date analysed	-	07/10/2011	07/10/2011	07/10/2011
НСВ	μg/L	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2
Heptachlor Epoxide	µg/L	<0.2	<0.2	<0.2
gamma-Chlordane	µg/L	<0.2	<0.2	<0.2
alpha-Chlordane	µg/L	<0.2	<0.2	<0.2
Endosulfan I	µg/L	<0.2	<0.2	<0.2
pp-DDE	µg/L	<0.2	<0.2	<0.2
Dieldrin	µg/L	<0.2	<0.2	<0.2
Endrin	µg/L	<0.2	<0.2	<0.2
pp-DDD	µg/L	<0.2	<0.2	<0.2
Endosulfan II	µg/L	<0.2	<0.2	<0.2
pp-DDT	µg/L	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2
Endosulfan Sulphate	µg/L	<0.2	<0.2	<0.2
Methoxychlor	µg/L	<0.2	<0.2	<0.2
Surrogate TCLMX	%	98	109	99

Client Reference: 72628.00, Parramatta

PCBs in Water				
Our Reference:	UNITS	62962-1	62962-2	62962-3
Your Reference		MW01	MW02	MW03
Date Sampled		05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water
Date extracted	-	07/10/2011	07/10/2011	07/10/2011
Date analysed	-	07/10/2011	07/10/2011	07/10/2011
Arochlor 1016	µg/L	<2	<2	<2
Arochlor 1221*	µg/L	<2	<2	<2
Arochlor 1232	µg/L	<2	<2	<2
Arochlor 1242	µg/L	<2	<2	<2
Arochlor 1248	µg/L	<2	<2	<2
Arochlor 1254	µg/L	<2	<2	<2
Arochlor 1260	µg/L	<2	<2	<2
Surrogate TCLMX	%	98	109	99

Client Reference: 72628.00, Parramatta

HM in water - dissolved					
Our Reference:	UNITS	62962-1	62962-2	62962-3	62962-4
Your Reference		MW01	MW02	MW03	DUP01
Date Sampled		05/10/2011	05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water	water
Date prepared	-	7/10/2011	7/10/2011	7/10/2011	7/10/2011
Date analysed	-	7/10/2011	7/10/2011	7/10/2011	7/10/2011
Arsenic-Dissolved	µg/L	2	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	2	1	4	<1
Copper-Dissolved	µg/L	4	3	2	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	0.1	<0.1	<0.1	<0.1
Nickel-Dissolved	μg/L	2	1	3	<1
Zinc-Dissolved	µg/L	14	9	6	4

Client Reference: 720

Miscellaneous Inorganics				
Our Reference:	UNITS	62962-1	62962-2	62962-3
Your Reference		MW01	MW02	MW03
Date Sampled		05/10/2011	05/10/2011	05/10/2011
Type of sample		water	water	water
Date prepared	-	07/10/2011	07/10/2011	07/10/2011
Date analysed	-	07/10/2011	07/10/2011	07/10/2011
Hardness	mgCaCO3	130	110	140
Coloium Dissoluted	, L	24	77	10
Calcium - Dissolved	mg/L	24	1.1	18
Magnesium - Dissolved	mg/L	16	22	22

Client Reference: 72628.00, Parramatta

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

Client Reference:

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
								Recovery
VOCs in water						Base II Duplicate II % RPD		
Date extracted	-			07/10/2 011	[NT]	[NT]	LCS-W1	07/10/2011
Date analysed	-			10/10/2 011	[NT]	[NT]	LCS-W1	10/10/2011
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	108%
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	114%
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	111%
1,1,1-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	115%
1,1-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	140%
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	106%
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	99%
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	112%
1,1,1,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	µg/L	2	Org-013	~2	[NT]	[NT]	[NR]	[NR]
Styrene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[TM]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	96	[NT]	[TM]	LCS-W1	100%
Surrogate toluene-d8	%		Org-013	98	[NT]	[NT]	LCS-W1	99%
Surrogate 4-BFB	%		Org-013	115	[NT]	[NT]	LCS-W1	96%

Client Reference	
------------------	--

	UNITS	PQI		Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
	ci il c			Diam	Dupiloate citiii			Recovery
vTRH&BTEX in Water						Base II Duplicate II % RPD		
Date extracted	-			06/10/2 011	[NT]	[NT]	LCS-W1	06/10/2011
Date analysed	-			07/10/2 011	[NT]	[NT]	LCS-W1	07/10/2011
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	84%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	86%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	100%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	106%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	103%
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	102	[NT]	[NT]	LCS-W1	78%
Surrogate toluene-d8	%		Org-016	104	[NT]	[NT]	LCS-W1	82%
Surrogate 4-BFB	%		Org-016	93	[NT]	[NT]	LCS-W1	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sTRH in Water (C10- C36)						Base II Duplicate II % RPD		Recovery
Date extracted	-			07/10/2	[NT]	[NT]	LCS-W1	07/10/2011
				011				
Date analysed	-			10/10/2 011	[NT]	[NT]	LCS-W1	10/10/2011
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	78%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	93%
Surrogate o-Terphenyl	%		Org-003	103	[NT]	[NT]	LCS-W1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			07/10/2 011	[NT]	[NT]	LCS-W1	07/10/2011
Date analysed	-			07/10/2 011	[NT]	[NT]	LCS-W1	07/10/2011
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	87%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	101%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	101%
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	97%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	103%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]

Client Reference:	
-------------------	--

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		-
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	107%
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	~2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	107%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[ТИ]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[ТИ]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	105	[NT]	[ТИ]	LCS-W1	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water						Base II Duplicate II % RPD		,
Date extracted	-			07/10/2 011	[NT]	[NT]	LCS-W1	07/10/2011
Date analysed	-			07/10/2 011	[NT]	[NT]	LCS-W1	07/10/2011
HCB	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	109%
gamma-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	120%
Heptachlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	108%
delta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	111%
Heptachlor Epoxide	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	111%
gamma-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	112%
Dieldrin	µg/L	0.2	Org-005	<0.2	INT	INT	LCS-W1	110%
Endrin	µg/L	0.2	Org-005	<0.2	INT	INT	LCS-W1	113%
pp-DDD	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	107%
Endosulfan II	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDT	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	113%
Methoxychlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-005	92	[NT]	[NT]	LCS-W1	99%

		Clie	ent Referenc	e: 72	2628.00, Parra	matta	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#
PCBs in Water						Base II Duplicate II % RPD	
Date extracted	-			07/10/2 011	[NT]	[TN]	LCS-W1
Date analysed	-			07/10/2 011	[NT]	[NT]	LCS-W1
Arochlor 1016	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]
Arochlor 1221*	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]
Arochlor 1232	µg/L	2	Org-006	<2	[NT]	[NT]	[NR]
Arochlor 1242	µg/L	2	Org-006	<2	[NT]	[NT]	[NR]
Arochlor 1248	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]
Arochlor 1254	µg/L	2	Org-006	~2	[NT]	[NT]	LCS-W1
Arochlor 1260	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]
Surrogate TCLMX	%		Org-006	92	[NT]	[NT]	LCS-W1
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#
HM in water - dissolved						Base II Duplicate II % RPD	
Date prepared	-			7/10/20 11	62962-1	7/10/2011 7/10/2011	LCS-W1
Date analysed	-			7/10/20 11	62962-1	7/10/2011 7/10/2011	LCS-W1
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	62962-1	2 2 RPD:0	LCS-W1
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	62962-1	<0.1 <0.1	LCS-W1
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	62962-1	2 2 RPD:0	LCS-W1
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	62962-1	4 4 RPD:0	LCS-W1
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	62962-1	<1 <1	LCS-W1

Mercury-Dissolved

Nickel-Dissolved

Zinc-Dissolved

µg/L

µg/L

µg/L

0.1

1

1

Metals-021

CV-AAS

Metals-022

ICP-MS

Metals-022

ICP-MS

<0.1

<1

<1

62962-1

62962-1

62962-1

0.1 || 0.1 || RPD: 0

2||2||RPD:0

14||15||RPD:7

Spike % Recovery

07/10/2011

07/10/2011

[NR]

[NR]

[NR]

[NR]

[NR]

123% [NR]

140%

7/10/2011

7/10/2011

95%

94%

98%

90%

98%

120%

93%

92%

LCS-W1

LCS-W1

LCS-W1

Spike % Recovery

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD	ase II Duplicate II % RPD		
Date prepared	-			07/10/2 011	62962-1	07/10/2011 07/10/20	07/10/2011 07/10/2011		07/10/2011
Date analysed	-			07/10/2 011	62962-1	07/10/2011 07/10/20	011	LCS-1	07/10/2011
Hardness	mgCaCO 3/L	3		3.0	62962-1	130 130 RPD:0		[NR]	[NR]
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	62962-1	24 25 RPD:4		LCS-1	95%
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	62962-1	16 16 RPD:0		LCS-1	102%
QUALITYCONTROL	UNITS	S 1	Dup.Sm#		Duplicate	Spike Sm#	Spi	ke % Recovery	
HM in water - dissolved				Base+I	Duplicate + %RPD				
Date prepared	-	- [NT]		[NT]		62962-2		7/10/2011	_
Date analysed	-		[NT]	[NT]		62962-2		7/10/2011	
Arsenic-Dissolved	µg/L		[NT]		[NT]	62962-2		91%	
Cadmium-Dissolved	µg/L		[NT]		[NT]	62962-2		91%	
Chromium-Dissolved	µg/L		[NT]	[NT]		62962-2	62962-2		
Copper-Dissolved	µg/L		[NT]		[NT]	62962-2	62962-2		
Lead-Dissolved	µg/L		[NT]		[NT]	62962-2		90%	
Mercury-Dissolved	µg/L		[NT]		[NT]	62962-2		112%	
Nickel-Dissolved	µg/L		[NT]		[NT]	62962-2		88%	
Zinc-Dissolved	µg/L		[NT]		[NT]	62962-2		84%	
QUALITYCONTROL	UNITS	6	Dup.Sm#		Duplicate	Spike Sm#	Spi	ke % Recovery	
Miscellaneous Inorganics				Base+I	Duplicate + %RPD				
Date prepared	-		[NT]		[NT]	62962-2		07/10/2011	
Date analysed	-		[NT]		[NT]	62962-2		07/10/2011	
Hardness	mgCaC 3/L	ò	[NT]		[NT]	[NR]		[NR]	
Calcium - Dissolved	mg/L		[NT]		[NT]	62962-2		94%	
Magnesium - Dissolved	mg/L		[NT]		[NT]	62962-2		101%	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Project Project Project Email:/ Date R	t Name: t No: t Mgr: <i>(a.e. Sarr</i> Required:	1. .?. 	2628.0 2628.0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ntta So. Si Mob. Pho spartners 	Mase ampler: . one:S s.com.au Lab (, <u>, , , , , , , , , , , , , , , , , , </u>	2C/ & 5 0650	4 ?~~;,e.c.	<i></i>	· · · · · · · · · · · · · · · · · · ·	······	T A E	o: E 1 ttn: T P mail: 1	nvirola 2 Ashl ania N hone: tnotara	ib Serv ey Stre lotaras 02 991 is@en	vices eet, Cl 0 6200 virolal	natsw) Fax: pservi	ood NS 02 9910 ces.com.	5W 20 6201 .au	068
Sample ID	Sample Depth	Lab 1D	Sampling Date	Sample Type • water • Soil	Container type	TPU/BTEX	РАН	000	NB	8 heary Mekels	VOCS	Anines Handress	alytes					Other		Notes
MANOI		1	5/10/11	W	GIP	\overline{X}	X	\times	X	X	\times	X	<u> </u>	<u> </u>				<u> </u>		······································
MWOZ		2	5/10/11	W	GIP	\times	\times	$\left \times \right $	$\left \times \right $	\times	$\left X \right $	\times								
MNO3	l 	3	's/10/11	W	GIP	$ \times$	$\left X \right $	\boldsymbol{X}	\boldsymbol{X}	X	X	\times		1	1					
Nip Ol		<u> </u>	5/10/11	W	GIP	$ $ \ge	 			\times						† ·				

		li i	1 /		1														
			-									ł			1			х. (
											1			ł	1				nviroisb Services
					<u>-</u>	├ ───-					ļ			ļ				ENVIROUNE	12 Ashley St Manual NSW 2087
					ĺ]			ł	1				Ph; (02) 9910 6200
										_	<u>†</u>							Job No.	7 967
											L			[
																	_	Date Received	6.10.1
						-												Time Receiver:	14:50
									·					ļ	(Received by: 4	
														<u> </u>	1		+	Temp: Coll And	
																_		Cooling: Icelling	Berken None
															1			Security (
·····		· · · · ·									L	L						L	
сар керо	"t No		•••••	• • • • • • • • • •													Pho	ne: (02) 9809	0666
Send Resi	ults to: Do	uglas	Partne	ers Ade	dress:9	6 Hern	nitage	Road,	West	Rvde	2114						Fav	(02) 0900 4	005
Relinquishe	ed by:	2	– Sig	ned	10	- A		Date &	Time:	<u>Lin.</u>	11.		Receive	d By:	0 1/		<u>1 an.</u>	(02) 9009 4	095
Dollar av de he		yeur									//			ч шу. ————	<u>V.K</u>	role	with		
rteiinguisne	ea by: v		Sigi	ned:	proved by the second se		C	ate &	Time:				Received	d By:				Date & Time:	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

63193

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kate Graham

Sample log in details:

Your Reference:	72628, Parramatta					
No. of samples:	2 soils	_				
Date samples received / completed instructions received	11/10/11 /	11/10/11				

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 14/10/11
 / 14/10/11

 Date of Preliminary Report:
 not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Nick Sarlamis Inorganics Supervisor

Client Reference:

72628, Parramatta

spocas			
Our Reference:	UNITS	63193-1	63193-2
Your Reference		MW02/3-3.1	MW01/4-4.1
Type of sample		Soil	Soil
 Date prepared	-	10/10/2011	10/10/2011
Date analysed	-	10/10/2011	10/10/2011
рН ка	pH units	6.3	6.6
TAA pH 6.5	moles H ⁺ /t	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01
pH ∝	pH units	7.5	6.8
TPApH6.5	moles H ⁺ /t	<5	<5
s-TPA pH 6.5	%w/w S	<0.01	<0.01
TSA pH 6.5	moles H ⁺ /t	<5	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01
ANCE	%CaCO3	0.12	0.25
a-ANCe	moles H ⁺ /t	25	50
s-ANCe	%w/w S	<0.05	0.08
SKCI	%w/w S	<0.005	0.007
Sp	%w/w	0.007	0.04
Spos	%w/w	0.006	0.04
a-Spos	moles H ⁺ /t	<5	22
Саксі	%w/w	0.04	0.08
Сар	%w/w	0.12	0.10
Сал	%w/w	0.073	0.016
Мдксі	%w/w	0.008	0.018
Мgр	%w/w	0.025	0.090
MgA	%w/w	0.017	0.071
SRAS	%w/w	<0.005	<0.005
Sнсі	%w/w S	NT	NT
Snas	%w/w S	NT	NT
a-Snas	moles H ⁺ /t	NT	NT
s-Snas	%w/w S	NT	NT
a-Net Acidity	moles H ⁺ /t	<10	<10
Liming rate	kg CaCO3/t	<0.75	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA
Liming rate without ANCE	kg CaCO₃/t	NA	NA

Client Reference: 72628, Parramatta

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

lient	Reference:

Client Reference: 72628, Parramatta								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II % RPD		
Date prepared	-			10/10/2 011	[NT]	[NT]	LCS-1	10/10/2011
Date analysed	-			10/10/2 011	[NT]	[NT]	LCS-1	10/10/2011
рН ка	pH units		Inorg-064	5.4	[NT]	[NT]	LCS-1	102%
TAA pH 6.5	moles H⁺/t	5	Inorg-064	45	[NT]	[NT]	LCS-1	116%
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	LCS-1	114%
pH ox	pH units		Inorg-064	5.0	[NT]	[NT]	LCS-1	121%
TPApH6.5	moles H⁺/t	5	Inorg-064	45	[NT]	[NT]	LCS-1	94%
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	LCS-1	94%
TSA pH 6.5	moles H⁺/t	5	Inorg-064	45	[NT]	[NT]	LCS-1	90%
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	LCS-1	90%
ANCE	% CaCO3	0.05	Inorg-064	<0.05	[NT]	[NT]	[NR]	[NR]
a-ANCe	moles H⁺/t	5	Inorg-064	న	[NT]	[NT]	[NR]	[NR]
s-ANCe	%w/w S	0.05	Inorg-064	<0.05	[NT]	[NT]	[NR]	[NR]
Skci	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	111%
Sp	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	102%
Spos	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	99%
a-Spos	moles H⁺/t	5	Inorg-064	45	[NT]	[NT]	LCS-1	99%
Саксі	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	90%
Сар	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	81%
Сал	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Мдксі	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	100%
Mgp	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS-1	116%
Mga	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
SRAS	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Sнсі	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Snas	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
a-Snas	moles H ⁺ /t	5	Inorg-064	ත්	[NT]	[NT]	[NR]	[NR]
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
a-Net Acidity	moles H ⁺ /t	10	Inorg-064	<10	[NT]	[NT]	LCS-1	93%
Liming rate	kg CaCO3 /t	0.75	Inorg-064	<0.75	[NT]	[NT]	LCS-1	100%

Envirolab Reference: 63193 Revision No: R 00

Client Reference:

72628, Parramatta

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II %RPD		
a-Net Acidity without ANCE	moles H⁺/t	10	Inorg-064	<10	[NT]	[NT]	[NR]	[NR]
Liming rate without ANCE	kg CaCO3 /t	0.75	Inorg-064	<0.75	[NT]	[NT]	[NR]	[NR]

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Project Name:	Parramatta 72628 Sampler KER EG	To: E
Project Mgr:	Kade a tama @ dog los parties com all	Attn:
Email: Date Required:	24k Lab Quote No.	Email:

To: Envirolab Services

12 Ashley Street, Chatswood NSW 2068

Attn: Tania Notaras

Phone: 02 9910 6200 Fax: 02 9910 6201

Email: tnotaras@envirolabservices.com.au

					Sample Type							Analyte	S				
	Sampl e ID	Sampl e Depth	Lab ID	Sampling Date	S - soil W - water	Container type		spocas									Notes
1	MW02	13-3.1															
2	MWO	11-4	. \														
		/_ 															
						<u>+</u>											Envirolab Services
ļ																	Chetswood NSW 2067 Ph: (02) 9810 5200
																	JOD NO: 6.3193.
																	Date Received: 11/10/2011
																	Received by: Juk Linu.
											+			-			Temp: Cool/Ambient
										1			-				Security Inteo/Broken/None
	l		•	†		+											
Γ	ah Repor	IL	<u>II</u>	<u></u>	<u>I</u>	1 1							ų	-	Phon	ne:	(02) 9809 0666
	Send Res	ults to: D	ouala	s Parti	ners	Address:	96	Hermitage	Road, W	/est Ryde	e 2114				Fax:	.((02) 9809 4095
	Relinquishe	ed by:	2P	<u> </u>	Signed:	KP		ŭ	Date & Ti	me: \Óo	muli	o f	Received By:	3 m lite .		Da	ite & Time: 11/10/2011 15.25
	Relinquishe	ed by:		S	ligned:			D	ate & Tir	ne:		R	eceived By:			Dat	te & Time:

Page
$$\frac{1}{2}$$
 of $\frac{1}{2}$

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DETA	ILS	
Contact	Kate Sargent	Manager	Huong Crawford	
Client Address	DOUGLAS PARTNERS PTY LTD	Laboratory Address	SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9809 0666	Telephone	+61 2 8594 0400	
Facsimile	02 9809 4095	Facsimile	+61 2 8594 0499	
Email	kate.sargent@douglaspartners.com.au	Email	au.environmental.sydney@sgs.com	
Project	72628.00 - Contamination Assesment	SGS Reference	SE102202 R0	
Order Number	(Not specified)	Report Number	0000009000	
Samples	1	Date Reported	06 Oct 2011	
		Date Received	28 Sep 2011	,

COMMENTS .

Whilst SGS laboratories conform to ISO:17025 standards, results of analysis in this report fall outside of the current scope of NATA accreditation

SIGNATORIES _

Dong Liang Inorganics Metals Team Leader

Member _____

Ly Kim Ha Organics Supervisor

- Amorz

Huong Crawford Laboratory Manager

Tueway

Jue Wang Organic Chemist

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

ANALYTICAL REPORT

Sample Number SE102202.001

0.1

mg/kg

<0.1

	Sa S Sa	mple Matrix ample Date mple Name	Soil 22 Sep 2011 DUP04
Parameter	Units	LOR	
VOC's in Soil Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons			
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	ma/ka	0.2	<0.2

Oxygenated Compounds

|--|

Surrogates

o-xylene

Dibromofluoromethane (Surrogate)	%	-	68
d4-1,2-dichloroethane (Surrogate)	%	-	94
d8-toluene (Surrogate)	%	-	103
Bromofluorobenzene (Surrogate)	%	-	99

Totals

Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	-	0

Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN434

TRH C6-C9	mg/kg	20	<20

Surrogates

Trifluorotoluene (Surrogate)	%	-	126
Dibromofluoromethane (Surrogate)	%	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-
d8-toluene (Surrogate)	%	-	-
Bromofluorobenzene (Surrogate)	%	-	-

TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403

TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	50	<50
TRH C29-C36	mg/kg	50	<50
			-

Surrogates			
TRH (Surrogate)	%	-	-

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420

Naphthalene	mg/kg	0.1	0.2
2-methylnaphthalene	mg/kg	0.1	0.3
1-methylnaphthalene	mg/kg	0.1	0.3
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	0.3
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(a&h)anthracene	ma/ka	0.1	<0.1

ANALYTICAL REPORT

	Sam; Sar Sa Sa	SE102202.001 Soil 22 Sep 2011 DUP04	
Parameter	Units	LOR	
PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Method: AN42) (continu	ied)
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Total PAH	mg/kg	1.75	<1.8↑

Surrogates

d5-nitrobenzene (Surrogate)	%	-	75
2-fluorobiphenyl (Surrogate)	%	-	81
d14-p-terphenyl (Surrogate)	%	-	82

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: AN040/AN320

Arsenic, As	mg/kg	3	<3
Cadmium, Cd	mg/kg	0.3	0.5
Chromium, Cr	mg/kg	0.3	120
Copper, Cu	mg/kg	0.5	29
Lead, Pb	mg/kg	1	6
Nickel, Ni	mg/kg	0.5	110
Zinc, Zn	mg/kg	0.5	78

Mercury in Soil Method: AN312

Mercury	mg/kg	0.05	<0.05

Moisture Content Method: AN234

% Moisture	%	0.5	7.5

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS	MSD %RPD
	Reference					%Recovery	%Recovery	
Mercury	LB006209	mg/kg	0.05	<0.05	0 - 5%	103 - 107%	93%	5%

Moisture Content Method: ME-(AU)-[ENV]AN234

Parameter	QC	Units	LOR	DUP %RPD	
	Reference				
% Moisture	LB006230	%	0.5	0 - 3%	

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Naphthalene	LB006152	mg/kg	0.1	<0.1	101%
2-methylnaphthalene	LB006152	mg/kg	0.1	<0.1	NA
1-methylnaphthalene	LB006152	mg/kg	0.1	<0.1	NA
Acenaphthylene	LB006152	mg/kg	0.1	<0.1	109%
Acenaphthene	LB006152	mg/kg	0.1	<0.1	116%
Fluorene	LB006152	mg/kg	0.1	<0.1	NA
Phenanthrene	LB006152	mg/kg	0.1	<0.1	117%
Anthracene	LB006152	mg/kg	0.1	<0.1	118%
Fluoranthene	LB006152	mg/kg	0.1	<0.1	113%
Pyrene	LB006152	mg/kg	0.1	<0.1	118%
Benzo(a)anthracene	LB006152	mg/kg	0.1	<0.1	NA
Chrysene	LB006152	mg/kg	0.1	<0.1	NA
Benzo(b)fluoranthene	LB006152	mg/kg	0.1	<0.1	NA
Benzo(k)fluoranthene	LB006152	mg/kg	0.1	<0.1	NA
Benzo(a)pyrene	LB006152	mg/kg	0.1	<0.1	118%
Indeno(1,2,3-cd)pyrene	LB006152	mg/kg	0.1	<0.1	NA
Dibenzo(a&h)anthracene	LB006152	mg/kg	0.1	<0.1	NA
Benzo(ghi)perylene	LB006152	mg/kg	0.1	<0.1	NA
Total PAH	LB006152	mg/kg	1.75	<1.8	NA

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
d5-nitrobenzene (Surrogate)	LB006152	%	-	119%	116%
2-fluorobiphenyl (Surrogate)	LB006152	%	-	111%	112%
d14-p-terphenyl (Surrogate)	LB006152	%	-	116%	121%

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB006209	mg/kg	3	<3	0 - 13%	98%	66 - 70%
Cadmium, Cd	LB006209	mg/kg	0.3	<0.3	101%	98 - 99%	84%
Chromium, Cr	LB006209	mg/kg	0.3	<0.3	2 - 3%	99%	73 - 77%
Copper, Cu	LB006209	mg/kg	0.5	<0.5	1 - 2%	99 - 101%	82%
Lead, Pb	LB006209	mg/kg	1	<1	2 - 8%	98 - 99%	75%
Nickel, Ni	LB006209	mg/kg	0.5	<0.5	3 - 18%	100 - 102%	80%
Zinc, Zn	LB006209	mg/kg	0.5	<0.5	36%	101 - 102%	82%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C10-C14	LB006152	mg/kg	20	<20	6%	80%	NA
TRH C15-C28	LB006152	mg/kg	50	<50	0%	80%	NA
TRH C29-C36	LB006152	mg/kg	50	<50	0%	73%	NA

VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons Parame<u>ter</u> Units LOR MB LCS QC eference Recover Recover Benzene LB006148 mg/kg 0.1 <0.1 79% 94% Toluene LB006148 mg/kg 0.1 <0.1 88% 93% Ethylbenzene LB006148 mg/kg 0.1 <0.1 79% 93% LB006148 0.2 <0.2 81% 94% m/p-xylene mg/kg LB006148 o-xylene mg/kg 0.1 <0.1 84% 93%

Oxygenated Compounds					
Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
MtBE (Methyl-tert-butyl ether)	LB006148	mg/kg	0.1	<0.1	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB006148	%	-	84%	4%	86%	74%
d4-1,2-dichloroethane (Surrogate)	LB006148	%	-	86%	0%	93%	96%
d8-toluene (Surrogate)	LB006148	%	-	105%	1%	105%	101%
Bromofluorobenzene (Surrogate)	LB006148	%	-	98%	1%	97%	101%

Totals

Parameter	QC	Units	LOR	MB	LCS	MS
	Reference				%Recovery	%Recovery
Total Xylenes	LB006148	mg/kg	0.3	<0.3	NA	NA
Total BTEX	LB006148	mg/kg	-	0	NA	NA

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C9	LB006148	mg/kg	20	<20	0%	113%	108%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Trifluorotoluene (Surrogate)	LB006148	%	-	116%	4%	97%	84%

METHOD SUMMARY

METHOD	
- METHOD	METHODOLOGY SUMMARY
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
AN234	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with diffential polarity of the elluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependant on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES .

- Insufficient sample for analysis. IS
- LNR Sample listed, but not received. This analysis is not covered by the scope of accreditation.
- ۸ Performed by outside laboratory.
- Limit of Reporting LOR
- Raised or Lowered Limit of Reporting 1↓

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

- QFL QC result is below the lower tolerance
- QC result is above the upper tolerance The sample was not analysed for this analyte
- NVL Not Validated

QFH

STATEMENT OF QA/QC PERFORMANCE AGAINST DATA QUALITY OBJECTIVES

SE102202 R0

CLIENT DETAILS		LABORATORY DETAIL	S
Contact Client Address	Kate Sargent DOUGLAS PARTNERS PTY LTD	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9809 0666	Telephone	+61 2 8594 0400
Facsimile	02 9809 4095	Facsimile	+61 2 8594 0499
Email	kate.sargent@douglaspartners.com.au	Email	au.environmental.sydney@sgs.com
Project	72628.00 - Contamination Assesment	SGS Reference	SE102202 R0
Order Number	(Not specified)	Report Number	0000009001
Samples	1	Date Reported	06 Oct 2011

COMMENTS

All the laboratory data for each environmental matrix was compared to the SGS Environmental Services' stated data quality objectives (DQO).

Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the chain of custody document and was supplied by the client. This QA/QC statement must be read in conjunction with the referenced analytical report. The statement and the analytical report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY)	2 Items
MS	Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY)	4 Items

- SAMPLE SUMMARY				
Sample counts by matrix	1 Soil	Type of documentation received	COC	
Date documentation received	28/9/2011	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	2.8°C	
Sample container provider	Other Lab	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			
·				

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16, 33 Maddox Street

Alexandria NSW 2015 Australia

t +61 (0)2 8594 0400 f +61 (0)2 8594 0499

www.au.sgs.com

Page 1 of 11

HOLDING TIME SUMMARY

- HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and Red⁺ when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Mercury in Soil Method: ME-	(AU)-[ENV]AN312							
DUP04	SE102202.001	LB006209	22 Sep 2011	28 Sep 2011	20 Oct 2011	30 Sep 2011	20 Oct 2011	05 Oct 2011
Moisture Content Method: M	IE-(AU)-[ENV]AN234							
DUP04	SE102202.001	LB006230	22 Sep 2011	28 Sep 2011	06 Oct 2011	01 Oct 2011	06 Oct 2011	04 Oct 2011
	·			·	·	·	·	
PAH (Polynuclear Aromatic Hy	drocarbons) in Soil Method:	ME-(AU)-[ENV]AN	1420					
DUP04	SE102202.001	LB006152	22 Sep 2011	28 Sep 2011	06 Oct 2011	30 Sep 2011	09 Nov 2011	04 Oct 2011
			1	1	1		1	1
Total Recoverable Metals in Sc	bil by ICPOES from EPA 200.8	B Digest (SYDNEY)	Method: ME-(AU)-[ENV	JAN040/AN320				
DUP04	SE102202.001	LB006209	22 Sep 2011	28 Sep 2011	20 Mar 2012	30 Sep 2011	20 Mar 2012	06 Oct 2011
TRH (Total Recoverable Hydro	carbons) in Soil Method: M	E-(AU)-[ENV]AN40	3					
DUP04	SE102202.001	LB006152	22 Sep 2011	28 Sep 2011	06 Oct 2011	30 Sep 2011	09 Nov 2011	04 Oct 2011
						1		1
VOC's in Soil Method: ME-(A	AU)-[ENV]AN433/AN434							
VOC's in Soil Method: ME-(A	AU)-[ENV]AN433/AN434 SE102202.001	LB006148	22 Sep 2011	28 Sep 2011	06 Oct 2011	30 Sep 2011	09 Nov 2011	04 Oct 2011

DUP04	SE102202.001	LB006148	22 Sep 2011	28 Sep 2011	06 Oct 2011	30 Sep 2011	09 Nov 2011	04 Oct 2011

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420					
2-fluorobiphenyl (Surrogate)	DUP04	SE102202.001	%	60 - 130%	81
d14-p-terphenyl (Surrogate)	DUP04	SE102202.001	%	60 - 130%	82
d5-nitrobenzene (Surrogate)	DUP04	SE102202.001	%	60 - 130%	75
VOC's In Soll Method: ME-(AU)-[ENV]AN433/AN434					
Bromofluorobenzene (Surrogate)	DUP04	SE102202.001	%	60 - 130%	99
d4-1,2-dichloroethane (Surrogate)	DUP04	SE102202.001	%	60 - 130%	94
d8-toluene (Surrogate)	DUP04	SE102202.001	%	60 - 130%	103
Dibromofluoromethane (Surrogate)	DUP04	SE102202.001	%	60 - 130%	68
Volatile Petroleum Hydrocarbons in Soli Method: ME-(AU)-[ENV]AN433/AN434					
Trifluorotoluene (Surrogate)	DUP04	SE102202.001	%	60 - 130%	126

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, which is typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

		Control	BLK MB
Parameter	Units	LOR	
Mercury in Soil Method: ME-(AU)-[ENV]AN312 LB006209.001			
Mercury	mg/kg	0.05	<0.05
LB006209.026			
Mercury	mg/kg	0.05	<0.05
			,

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

LB006152.001 0.1 Naphthalene mg/kg <0.1 0 1 <0.1 2-methylnaphthalene mg/kg 0 1 <0.1 1-methylnaphthalene mg/kg 0.1 <0.1 Acenaphthylene mg/kg 0.1 <0.1 Acenaphthene mg/kg 0.1 <0.1 Fluorene mg/kg 0.1 <0.1 Phenanthrene mg/kg 0.1 <0.1 Anthracene mg/kg 0.1 <0.1 Fluoranthene mg/kg 0.1 <0.1 Pyrene mg/kg 0.1 <0.1 Benzo(a)anthracene mg/kg 0.1 <0.1 Chrysene mg/kg 0.1 <0.1 Benzo(a)pyrene mg/kg 0.1 <0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 Dibenzo(a&h)anthracene mg/kg 0.1 < 0.1 Benzo(ghi)perylene ma/ka Total PAH 1.75 <1.8 mg/kg Surrogates

d5-nitrobenzene (Surrogate)	%	-	119
2-fluorobiphenyl (Surrogate)	%	-	111
d14-p-terphenyl (Surrogate)	%	-	116

Total Recoverable Metals in Soll by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

Arsenic, As	mg/kg	3	<3
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	<0.3
Copper, Cu	mg/kg	0.5	<0.5
Lead, Pb	mg/kg	1	<1
Nickel, Ni	mg/kg	0.5	<0.5
Zinc, Zn	mg/kg	0.5	<0.5
LB006209.025			
Arsenic, As	mg/kg	3	<3
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	<0.3
Copper, Cu	mg/kg	0.5	<0.5
Lead, Pb	mg/kg	1	<1
Nickel, Ni	mg/kg	0.5	<0.5
Zinc, Zn	mg/kg	0.5	<0.5

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 LB006152.001

TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	50	<50
TRH C29-C36	mg/kg	50	<50
LB006152.025			
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	50	<50

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, which is typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

		Control	BLK MB
Parameter	Units	LOR	
Continued TRH (Total Recoverable Hydrocarbons) In Soli Method: ME-(AU)-[EI LB006152.025	NVJAN403		
TRH C29-C36	mg/kg	50	<50
VOC's In Soll Method: ME-(AU)-[ENV]AN433/AN434 LB006148.001 Monocyclic Aromatic Hydrocarbons			
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Oxygenated Compounds			
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
Surrogates	~		84
Dibromofluoromethane (Surrogate)	%		86
d4-1,2-dichloroethane (Surrogate)	%	-	105
d8-toluene (Surrogate)	%	-	09
Bromotluorobenzene (Surrogate)	%	-	90
l otais			_
Total BTEX	mg/kg	-	0
Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434 LB006148.001			

TRH C6-C9	mg/kg	20	<20
Surrogates			

Trifluorotoluene (Surrogate)	%	-	116

DUPLICATES

Duplicates are calculated as relative percent difference (RPD) using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

	Sample Name			SE1021		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Moisture Content Method: ME-(AU)-[ENV]AN234 LB006230.011						
% Moisture	%	0.5	3.1	3.0	46	3

	Sample Name			SE102201.0		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Mercury in Soil Method: ME-(AU)-[ENV]AN312						

LB006209.015

Mercury	mg/kg	0.05	NVL	0.87	36	5

Total Recoverable Metals In Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

LB006209.014

Arsenic, As	mg/kg	3	NVL	9	64	13
Cadmium, Cd	mg/kg	0.3	NVL	0.3	78	101†
Chromium, Cr	mg/kg	0.3	NVL	11	33	2
Copper, Cu	mg/kg	0.5	NVL	92	31	10
Lead, Pb	mg/kg	1	NVL	300	30	2
Nickel, Ni	mg/kg	0.5	NVL	8.2	36	18
Zinc, Zn	mg/kg	0.5	NVL	560	30	36†

RPD failed acceptance criteria due to sample heterogeneity.

RPD failed acceptance criteria due to sample heterogeneity.

	Sample Name			SE1022		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Molsture Content Method: ME-(AU)-[ENV]AN234 LB006230.021						
% Moisture	%	0.5	7.5	7.5	37	0

	Sample Name			SE102249.007	7-DUP	
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 LB006152.024						

TRH C10-C14	mg/kg	20	440	410	35	6
TRH C15-C28	mg/kg	50	<50	<50	200	0
TRH C29-C36	mg/kg	50	<50	<50	200	0

38	inple Name		3E102257.001	-DOP	
Parameter Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %

VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434

LB006148.024 Surrogates

- 5			2	to
		чч		
		~		

Dibromofluoromethane (Surrogate)	%	-	82	79.0	50	4
d4-1,2-dichloroethane (Surrogate)	%	-	92	92.0	50	0
d8-toluene (Surrogate)	%	-	104	103.0	50	1
Bromofluorobenzene (Surrogate)	%	-	95	94.0	50	1

DUPLICATES

Duplicates are calculated as relative percent difference (RPD) using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

	Sample Name			SE1022		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Volatile Petroleum Hydrocarbons in Soli Method: ME-(AU)-[ENV]AN433/AN434 LB006148.024						
TRH C6-C9	mg/kg	20	<20	<20	200	0
Surrogates						
Trifluorotoluene (Surrogate)	%	-	99.0	95	30	4
	Sa	ample Name		SE1022	76.009-DUP	
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %

Mercury in Soil Method: ME-(AU)-[ENV]AN312

LB006209.029

Mercury	mg/kg	0.05	0.03633895473294	<0.05	165	0

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

LB006209.028

Arsenic, As	mg/kg	3	0.880120581890592	<3	200	0
Cadmium, Cd	mg/kg	0.3	0.100022401681509	<0.3	200	0
Chromium, Cr	mg/kg	0.3	7.28524807788041	7.5	34	3
Copper, Cu	mg/kg	0.5	5.24298910337961	5.3	39	1
Lead, Pb	mg/kg	1	6.07561258919188	6	47	4
Nickel, Ni	mg/kg	0.5	2.31395265224847	2.4	51	3
Zinc, Zn	mg/kg	0.5	7.7383704850932	7.6	37	2

Parameter Units LOR Original Result Duplicate Result Criteri	Criteria % RPD %

Mercury in Soil Method: ME-(AU)-[ENV]AN312 LB006209.032

Mercury	mg/kg	0.05	0.0409170403587443	<0.05	151	0

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

LB006209.032

Arsenic, As	mg/kg	3	0.612738930023985	<3	200	0
Cadmium, Cd	mg/kg	0.3	0.0878261945979767	<0.3	200	0
Chromium, Cr	mg/kg	0.3	6.86414933778287	7.1	34	3
Copper, Cu	mg/kg	0.5	5.40976556470956	5.5	39	2
Lead, Pb	mg/kg	1	4.85046928772551	5	50	8
Nickel, Ni	mg/kg	0.5	2.45449258525393	2.4	51	3
Zinc, Zn	mg/kg	0.5	8.82359745541766	9.2	36	5

LABORATORY CONTROL STANDARDS

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of the report.

Recovery is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

	Cont	rol		LCS	STD	
Parameter	Units	LOR	Result	Expected Result	Criteria %	Recovery %
Mercury in Soil Method: ME-(AU)-[ENV]AN312 LB006209.002						
Mercury	mg/kg	0.05	0.21	0.2	70 - 130	107
LB006209.027						
Mercury	mg/kg	0.05	0.21	0.2	70 - 130	103
PAH (Polynuclear Aromatic Hydrocarbons) In Soil Method: ME-(AU)-[ENV]A LB006152.002	N420	0.1	24	2 27	60 140	101
Naphthalene	mg/kg	0.1	3.4	3.37	60 140	101
Acenaphthylene	mg/kg	0.1	3.7	3.37	60 - 140	109
Acenaphtnene	mg/kg	0.1	3.9	3.37	60 - 140	117
Anthracene	mg/kg	0.1	4.0	3.37	60 - 140	118
	mg/kg	0.1	3.8	3.37	60 - 140	113
Pyrene	ma/ka	0.1	4.0	3.37	60 - 140	118
Benzo(a)pyrene	mg/kg	0.1	4.0	3.37	60 - 140	118
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	116	100	60 - 140	116
2-fluorobiphenyl (Surrogate)	%	-	112	100	60 - 140	112
d14-p-terphenyl (Surrogate)	%	-	121	100	60 - 140	121
I otal Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNE) LB006209.002	r) method: ME-(AU)-[ENV]AN040//	AN320				
Arsenic, As	mg/kg	3	49	50	80 - 120	98
Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	99
Chromium, Cr	mg/kg	0.3	49	50	80 - 120	99
Copper, Cu	mg/kg	0.5	50	50	80 - 120	101
Lead, Pb	mg/kg	1	49	50	80 - 120	99
Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102

LB006209.026

Zinc, Zn

Arsenic, As	mg/kg	3	49	50	80 - 120	98
Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	98
Chromium, Cr	mg/kg	0.3	49	50	80 - 120	99
Copper, Cu	mg/kg	0.5	50	50	80 - 120	99
Lead, Pb	mg/kg	1	49	50	80 - 120	98
Nickel, Ni	mg/kg	0.5	50	50	80 - 120	100
Zinc, Zn	mg/kg	0.5	51	50	80 - 120	101

0.5

51

mg/kg

50

80 - 120

102

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

LB006152.002

TRH C10-C14	mg/kg	20	32	40	60 - 140	80
TRH C15-C28	mg/kg	50	<50	40	60 - 140	80
TRH C29-C36	mg/kg	50	<50	40	60 - 140	73
LB006152.026						
TRH C10-C14	mg/kg	20	32	40	60 - 140	80
TRH C15-C28	mg/kg	50	<50	40	60 - 140	80
TRH C29-C36	mg/kg	50	<50	40	60 - 140	73
VOC's in Soil Method: ME-(AU)-TENVIAN433/AN434						

LB006148.002

LABORATORY CONTROL STANDARDS

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of the report.

Recovery is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria.

Control LCS STD					
Units	LOR	Result	Expected Result	Criteria %	Recovery %
mg/kg	0.1	1.8	2.27	60 - 140	79
mg/kg	0.1	2.0	2.27	60 - 140	88
mg/kg	0.1	1.8	2.27	60 - 140	79
mg/kg	0.2	3.7	4.54	60 - 140	81
mg/kg	0.1	1.9	2.27	60 - 140	84
%	-	86.0	100	60 - 140	86
%	-	93.0	100	60 - 140	93
%	-	105.0	100	60 - 140	105
%	-	97.0	100	60 - 140	97
			· · · · · · · · · · · · · · · · · · ·		
mg/kg	20	26	23	60 - 140	113
	Cont Units	Control Units LOR mg/kg 0.1 % - % - % - % - % - % - % - % - % - mg/kg 20	Control Units LOR Result mg/kg 0.1 1.8 mg/kg 0.1 2.0 mg/kg 0.1 1.8 mg/kg 0.1 1.8 mg/kg 0.2 3.7 mg/kg 0.1 1.9 % - 86.0 % - 93.0 % - 93.0 % - 97.0 mg/kg 20 26	Control LOR Result Expected Result mg/kg 0.1 1.8 2.27 mg/kg 0.1 2.0 2.27 mg/kg 0.1 1.8 2.27 mg/kg 0.1 1.8 2.27 mg/kg 0.1 1.9 1.00 % - 93.0 100 % - 97.0 100 % - 97.0 100 mg/kg 20 26 23	Control LCS STD Units LOR Result Expected Result Criteria % mg/kg 0.1 1.8 2.27 60 - 140 mg/kg 0.1 2.0 2.27 60 - 140 mg/kg 0.1 1.8 2.27 60 - 140 mg/kg 0.1 1.8 2.27 60 - 140 mg/kg 0.1 1.9 2.27 60 - 140 mg/kg 0.1 1.9 2.27 60 - 140 mg/kg 0.1 1.9 2.27 60 - 140 % - 93.0 100 60 - 140 % - 93.0 100 60 - 140 % - 97.0 100 60 - 140 % - 97.0 100 60 - 140 % - 97.0 100 60 - 140 % - 97.0 100 60 - 140 % - 97.0 100 60 - 140

QUALITY CONTROL - MATRIX SPIKES

Matrix spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of the report. Recovery is shown in Green when within suggested criteria or **Bold** with an appended dagger symbol and **Red**[†] when outside suggested criteria.

		Control		MS		
Parameter	Units	LOR	Result	Original Result	Spike Added	Recovery %
Mercury in Soil Method: ME-(AU)-[ENV]AN312 LB006209.004						
Mercury	mg/kg	0.05	0.23	0.0450145748987855	0.2	93

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

LB006209.004

Arsenic, As	mg/kg	3	50	15.3700865867801	50	70†
Cadmium, Cd	mg/kg	0.3	42	0.209401559721686	50	84
Chromium, Cr	mg/kg	0.3	50	13.4843737920371	50	73
Copper, Cu	mg/kg	0.5	52	14.2243573637418	50	76
Lead, Pb	mg/kg	1	49	14.0347816003093	50	70†
Nickel, Ni	mg/kg	0.5	47	7.09951971395439	50	80
Zinc, Zn	mg/kg	0.5	73	45.4335504445304	50	55†

Recovery failed acceptance criteria due to matrix interference.

Recovery failed acceptance criteria due to matrix interference.

Recovery failed acceptance criteria due to matrix interference.

LB006209.030

Arsenic, As	mg/kg	3	34	0.822266060282225	50	66†
Cadmium, Cd	mg/kg	0.3	39	0.14146897906395	50	79
Chromium, Cr	mg/kg	0.3	51	12.7122859641027	50	77
Copper, Cu	mg/kg	0.5	50	9.37039121511672	50	82
Lead, Pb	mg/kg	1	43	5.72164312777792	50	75
Nickel, Ni	mg/kg	0.5	46	5.9956203701455	50	80
Zinc, Zn	mg/kg	0.5	55	14.3096067204236	50	82

Recovery failed acceptance criteria due to matrix interference.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

LB006152.028						
TRH C10-C14	mg/kg	20	430	330	-	NA
TRH C15-C28	mg/kg	50	70	<50	-	NA
TRH C29-C36	mg/kg	50	60	<50	-	NA
VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434						
LB006148.004						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	2.1	<0.1	2.27	94
Toluene	mg/kg	0.1	2.1	<0.1	2.27	93
Ethylbenzene	mg/kg	0.1	2.1	<0.1	2.27	93
m/p-xylene	mg/kg	0.2	4.3	<0.2	4.54	94
o-xylene	mg/kg	0.1	2.1	<0.1	2.27	93
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	74.0	72.0	100	74
d4-1,2-dichloroethane (Surrogate)	%	-	96.0	97.0	100	96
d8-toluene (Surrogate)	%	-	101.0	102.0	100	101
Bromofluorobenzene (Surrogate)	%	-	101.0	99.0	100	101
Totals						
Total Xylenes	mg/kg	0.3	6.4	<0.3	-	NA
Total BTEX	mg/kg	-	13	0	-	NA
Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434 LB006148.004						
TRH C6-C9	mg/kg	20	25	<20	23	108
Surrogates						
Trifluorotoluene (Surrogate)	%	-	84	95	-	84

MATRIX SPIKE DUPLICATES

Matrix spike duplicates are calculated as relative percent difference using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate. The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200. RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red⁺ when outside suggested criteria. Control Matrix MSD Solid MS Duplicate Result MS Result Criteria % RPD % Parameter Mercury in Soil Method: ME-(AU)-[ENV]AN312 1 0000000 005

_	v	v	~	v	0	

LB000203.003						
Mercury	mg/kg	0.05	0.23	0.22	52	5

FOOTNOTES _

- IS Insufficient sample for analysis.
- Sample listed, but not received. LNR

* NATA Accreditation does not cover this analysis.

۸ Performed by outside laboratory.

LOR Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte NA

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.